Epidermal powder immunisation (EPI) is being investigated as a promising needle-free delivery methods for vaccination. The objective of this work was to prepare a nanoparticles-in-microparticles (nano-in-micro) system, integrating the advantages of nanoparticles and microparticles into one vaccine delivery system for epidermal powder immunisation. Cationic mesoporous silica nanoparticles (MSNP-NH2) were prepared and loaded with ovalbumin as a model antigen. Loading was driven by electrostatic interactions. Ovalbumin-loaded silica nanoparticles were subsequently formulated into sugar-based microparticles by spray-freeze-drying. The obtained microparticles meet the size requirement for EPI. Confocal microscopy was used to demonstrate that the nanoparticles are homogeneously distributed in the microparticles. Furthermore, the silica nanoparticles in the dry microparticles can be re-dispersed in aqueous solution showing no aggregation. The recovered ovalbumin shows integrity compared to native ovalbumin. The present nano-in-micro system allows (1) nanoparticles to be immobilized and finely distributed in microparticles, (2) microparticle formation and (3) re-dispersion of nanoparticles without subsequent aggregation. The nanoparticles inside microparticles can (1) adsorb proteins to cationic shell/surface voids in spray-dried products without detriment to ovalbumin stability, (2) deliver antigens in nano-sized modes to allow recognition by the immune system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2014.07.004 | DOI Listing |
Adv Healthc Mater
January 2025
Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India.
Uncontrollable haemorrhage and associated microbial contamination in the battlefield and civilian injuries pose a tremendous threat to healthcare professionals. Such traumatic wounds often necessitate an effective point-of-care solution to prevent the consequent morbidity owing to blood loss or haemorrhage. However, developing superior hemostatic materials with anti-infective properties remains a challenge.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
Under a changing climate, enhancing the drought resilience of crops is critical to maintaining agricultural production and reducing food insecurity. Here, we demonstrate that seed priming with amorphous silica (SiO) nanoparticles (NPs) (20 mg/L) accelerated seed germination speed, increased seedlings vigor, and promoted seedling growth of rice under polyethylene glycol (PEG)-mimicking drought conditions. An orthogonal approach was used to uncover the mechanisms of accelerated seed germination and enhanced drought tolerance, including electron paramagnetic resonance, Fourier transform infrared spectroscopy (FTIR), metabolomics, and transcriptomics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Conventional dark-tone paints absorb both visible light and near-infrared (NIR) wavelengths, posing a challenge for light detection and ranging (LiDAR) recognition in autonomous driving. To overcome this issue, various chemical and structural coating materials have been explored to selectively reflect NIR. In this study, we newly propose colloidal photonic crystals with a stopband in the NIR range, fabricated through the spontaneous formation of crystalline arrays of silica particles dispersed in a photocurable resin, as a potential solution.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China.
Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea.
The differentiation of human induced pluripotent stem cells (hiPSCs) into neural progenitor cells (NPCs) is a promising approach for the treatment of neurodegenerative diseases and regenerative medicine. Dual-SMAD inhibition using small molecules has been identified as a key strategy for directing the differentiation of hiPSCs into NPCs by regulating specific cell signaling pathways. However, conventional culture methods are time-consuming and exhibit low differentiation efficiency in neural differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!