Despite increasing numbers of women availing themselves of assisted reproductive technology (ART), effects on cancer risk remain unresolved. Given hormonal exposures, breast cancer risk is of particular concern. The aim of this study is to investigate breast cancer risk amongst women giving birth following ART as compared to that amongst women who gave birth without ART. Data on all women who gave birth in Norway with or without ART, between 1984 and 2010 were obtained from the Medical Birth Registry of Norway (MBRN). 808,834 women eligible for study were linked to the Cancer Registry of Norway. Cox proportional models computed hazard ratios (HR) and 95% confidence intervals (CI) of breast cancer between the two groups, adjusting for age, parity, age at first birth, calendar period and region of residence. In total, 8,037 women were diagnosed with breast cancer during the study period, 138 ART women and 7,899 unexposed. Total follow-up time was 12,401,121 person-years (median 16.0); median age at entry was 32.5 years (range 18.6-49.9) for ART women and 26.3 (range 10.5-54.6) for unexposed. Women exposed to ART had an elevated risk of breast cancer (adjusted HR 1.20, 95% CI 1.01-1.42). Subgroup analyses gave an HR of 1.30 (95% CI 1.07-1.57) for women treated with IVF and 1.35 (95 % CI 1.07-1.71) for women with follow-up >10 years, compared with controls. Our findings of increased risk in the study population warrant continued monitoring of women treated with ART as this population advances into more typical cancer age ranges.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268160 | PMC |
http://dx.doi.org/10.1002/ijc.29069 | DOI Listing |
Curr Pharm Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, P.O. Box 114 (Postal Code: 45142), Jazan, Kingdom of Saudi Arabia.
Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.
Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.
Adv Mater
January 2025
Department of Mechanical and Aerospace Engineering, Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues.
View Article and Find Full Text PDFSmall
January 2025
College of Osteopathic Medicine, Liberty University, Lynchburg, VA, 24502, USA.
Using a combined top-down (i.e., operator-directed) and bottom-up (i.
View Article and Find Full Text PDFJ Pharm Policy Pract
January 2025
Clinical Pharmacy Department, King Fahad Medical City, Riyadh, Saudi Arabia.
Background: Cancer cases in the Kingdom of Saudi Arabia (KSA) have tripled in recent years. Quality of Life (QoL) measurements are crucial for healthcare professionals because they reveal important information about how patients respond to drugs and their general health. This study aimed to collect and summarise articles exploring the QoL of patients undergoing oncology treatments in KSA.
View Article and Find Full Text PDFMater Today Bio
February 2025
Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
Cell membrane targeting sonodynamic therapy could induce the accumulation of lipid peroxidation (LPO), drive ferroptosis, and further enhances immunogenic cell death (ICD) effects. However, ferroptosis is restrained by the ferroptosis suppressor protein 1 (FSP1) at the plasma membrane, which can catalyze the regeneration of ubiquinone (CoQ10) by using NAD(P)H to suppress the LPO accumulation. This work describes the construction of US-active nanoparticles (TiF NPs), which combinate cell-membrane targeting sonosensitizer TBT-CQi with FSP1 inhibitor (iFSP1), facilitating cell-membrane targeting sonodynamic-triggered ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!