Ablative fractional carbon dioxide (CO2) lasers have been widely used for several types of cosmetic dermatosis. A number of previous studies have evaluated this technique in animals or human beings by observing morphologic changes using an invasive modality such as skin biopsy. In this study, we assessed in vivo skin changes after CO2 ablative fractional laser treatment in a mouse model using noninvasive imaging modalities (Folliscope(®) and Visioscan 98(®)), and each results was compared with data from histologic examination. An ablative fractional CO2 laser was applied with different pulse energy between 7 to 35 mJ/microspot. As results of above methods, we also confirmed that the CO2 ablative fractional laser generated injuries with increasing width and depth with increasing pulse energy. Although numerous papers have described application of this laser in vivo skin specimens, our study evaluated the feasibility of using relative noninvasive imaging modalities for assessing the outcome of laser ablation. Based on our data, we suggest that these technologies may be useful alternative modalities for assessing laser ablation that are easier to perform and less invasive than skin biopsy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/php.12313 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!