A reliable method to determine cell wall polysaccharides composition in yeast is presented, which combines acid and enzymatic hydrolysis. Sulphuric acid treatment is used to determine mannans, whereas specific hydrolytic enzymes are employed in a two sequential steps to quantify chitin and the proportion of β-(1,3) and β-(1,6)-glucan in the total β-glucan of the cell wall. In the first step, chitin and β-(1,3)-glucan were hydrolysed into their corresponding monomers N-acetylglucosamine and glucose, respectively, by the combined action of a chitinase from Streptomyces griseus and a pure preparation of endo/exo-β-(1,3)-glucanase from Trichoderma species. This step was followed by addition of recombinant endo-β-(1,6)-glucanase from Trichoderma harzianum with β-glucosidase from Aspergillus niger to hydrolyse the remaining β-glucan. This latter component corresponded to a highly branched β-(1,6)-glucan that contained about 75-80% of linear β-(1,6)-glucose linked units as deduced from periodate oxidation. We validated this novel method by showing that the content of β-(1,3), β-(1,6)-glucan or chitin was dramatically decreased in yeast mutants defective in the biosynthesis of these cell wall components. Moreover, we found that heat shock at 42 °C in Saccharomyces cerevisiae and treatment of this yeast species and Candida albicans with the antifungal drug caspofungin resulted in 2- to 3-fold increase of chitin and in a reduction of β-(1,3)-glucan accompanied by an increase of β-(1,6)-glucan, whereas ethanol stress had apparently no effect on yeast cell wall composition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1567-1364.12182 | DOI Listing |
Vaccines (Basel)
December 2024
Laboratory of Molecular Studies and Experimental Therapy-LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil.
Background/objectives: DNA vaccines are rapidly produced and adaptable to different pathogens, but they face considerable challenges regarding stability and delivery to the cellular target. Thus, effective delivery methods are essential for the success of these vaccines. Here, we evaluated the efficacy of capsules derived from the cell wall of the yeast as a delivery system for DNA vaccines.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.
Background/objectives: The MHCII-dependent, CD4+ T-cell zwitterionic polysaccharide PS A1 has been investigated as a promising carrier for vaccine development because it can induce an MHCII-dependent CD4+ response towards a variety of tumor-associated carbohydrate antigens (TACAs). However, PS A1 cannot elicit cytotoxic T lymphocytes through MHCI, which may or may not hamper its potential clinical use in cancer, infectious and viral vaccine development. This paper addresses PS A1 MHCI independence through the introduction of an MHCI epitope, the poliovirus (PV) peptide, to establish an MHCI- and MHCII-dependent vaccine.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
Plant height represents a pivotal agronomic trait for the genetic enhancement of crops. The plant cell wall, being a dynamic entity, is crucial in determining plant stature; however, the regulatory mechanisms underlying cell wall remodeling remain inadequately elucidated. This study demonstrates that the application of gibberellin 3 (GA3) enhances both plant height and cell wall remodeling in tomato () plants.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang 261000, China.
The acquisition and utilization of cell walls have fundamentally shaped the plant lifestyle. While the walls provide mechanical strength and enable plants to grow and occupy a three-dimensional space, successful sessile life also requires the walls to undergo dynamic modifications to accommodate size and shape changes accurately. Plant cell walls exhibit substantial mechanical heterogeneity due to the diverse polysaccharide composition and different development stages.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24007 León, Spain.
Cell walls play essential roles in cell recognition, tissue adhesion, and wound response. In particular, pectins as cell-adhesive agents are expected to play a key role in the early stages of grafting. To test this premise, this study focused on examining the dynamics of the accumulation and degree of methyl-esterification of pectic polysaccharides at the graft junctions using tomato autografts as an experimental model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!