Background: Virus-specific CD4 and CD8 T lymphocytes from HLA-matched donors are effective for treatment and prophylaxis of viral infections in immune-compromised recipients of hematopoietic stem cell transplant recipients. Adoptive immune reconstitution is based on selection of specific T cells or on generation of specific T-cell lines from the graft donor. Unfortunately, the graft donor is not always immune to the relevant pathogen or the graft donor may not be available (registry-derived or cord blood donors).
Study Design And Methods: Since the possibility of using T cells from a third-party subject is now established, we screened potential donors for T-cell responses against cytomegalovirus (CMV), Epstein-Barr virus (EBV), and adenovirus, the viruses most frequently targeted by adoptive immune reconstitution. Specific T-cell responses against viral antigens were analyzed in 111 donors using a miniaturized interferon-γ release assay.
Results: Responders to CMV were 64%, to EBV 40%, and to adenovirus 51%. Simultaneous responders to the three viruses were 49%. CMV-specific CD4 and CD8 T-cell lines could be generated from 11 of 12 donors defined as positive responders according to the T-cell assay.
Conclusions: These data demonstrate that a large fraction of volunteers can be recruited in a donor registry for selection or expansion of virus specific T cells and that our T-cell assay predicts the donors' ability to give rise to established T-cell lines endowed with proliferative potential and effector function for adoptive immune reconstitution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/trf.12754 | DOI Listing |
ACS Nano
January 2025
Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States.
The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting.
View Article and Find Full Text PDFJ Med Virol
February 2025
Infectious Diseases Department, University Hospital Montpellier & INSERM U1175, University Montpellier, Montpellier, France.
Despite viral suppression with antiretroviral therapy, immune nonresponders (INR) among people living with HIV (PLWH) still have a higher risk of developing AIDS-related and non-AIDS-related complications. Our study aimed to investigate the phenotype and functions of Natural Killer (NK) cells in INR, to better understand underlying mechanisms of immune nonresponse. Our cross-sectional study included PLWH aged over 45 with an undetectable HIV viral load sustained for at least 2 years.
View Article and Find Full Text PDFDrug Dev Res
February 2025
Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China.
We aimed to elucidate the prognostic and immunological roles of B cell-related genes in colorectal cancer (CRC). This study comprehensively integrated data from single-cell RNA-sequencing, TCGA, GEO, IMvigor210, GDSC, CancerSEA, HPA, and TISIDB databases to explore prognostic implications and immunological significance of B cell-related gene signature in CRC. We identified seven prognostically significant B cell-related genes for constructing a risk score.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
Background: Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer, characterized by frequent recurrence, metastasis, and poor survival outcomes despite chemotherapy-based treatments. This study aims to investigate the mechanisms by which Traditional Chinese Medicine (TCM) modulates the tumor immune microenvironment in TNBC, utilizing CiteSpace and bioinformatics analysis.
Methods: We employed CiteSpace to analyze treatment hotspots and key TCM formulations, followed by bioinformatics analysis to identify the main active components, targets, associated pathways, and their clinical implications in TNBC treatment.
Front Immunol
January 2025
Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan.
The cellular and molecular mechanisms underlying lymphocyte development are diverse among teleost species. Although recent scRNA-seq analyses of zebrafish hematopoietic cells have advanced our understanding of teleost hematopoiesis, comparative studies using another genetic model, medaka, which is evolutionarily distant among teleosts, is useful for understanding commonality and species-specificity in teleosts. In order to gain insight into how different molecular and cellular mechanisms of lymphocyte development in medaka and zebrafish, we established a () mutant medaka, which exhibited defects in V(D)J rearrangement of lymphocyte antigen receptor genes, accordingly lacking mature B and T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!