A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microcirculation of skeletal muscle adapts differently to a resistive exercise intervention with and without superimposed whole-body vibrations. | LitMetric

Whole-body vibration (WBV) training is commonly practiced and may enhance peripheral blood flow. Here, we investigated muscle morphology and acute microcirculatory responses before and after a 6-week resistive exercise training intervention without (RE) or with (RVE) simultaneous whole-body vibrations (20 Hz, 6 mm peak-to-peak amplitude) in 26 healthy men in a randomized, controlled parallel-design study. Total haemoglobin (tHb) and tissue oxygenation index (TOI) were measured in gastrocnemius muscle (GM) with near-infrared spectroscopy (NIRS). Whole-body oxygen consumption (VO2 ) was measured via spirometry, and skeletal muscle morphology was determined in soleus (SOL) muscle biopsies. Our data reveal that exercise-induced muscle deoxygenation both before and after 6 weeks training was similar in RE and RVE (P = 0.76), although VO2 was 20% higher in the RVE group (P < 0.001). The RVE group showed a 14%-point increase in reactive hyperaemia (P = 0.007) and a 27% increase in blood volume (P < 0.01) in GM after 6 weeks of training. The number of capillaries around fibres was increased by 15% after 6 weeks training in both groups (P < 0.001) with no specific effect of superimposed WBV (P = 0.61). Neither of the training regimens induced fibre hypertrophy in SOL. The present findings suggest an increased blood volume and vasodilator response in GM as an adaptation to long-term RVE, which was not observed after RE alone. We conclude that RVE training enhances vasodilation of small arterioles and possibly capillaries. This effect might be advantageous for muscle thermoregulation and the delivery of oxygen and nutrients to exercising muscle and removal of carbon dioxide and metabolites.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cpf.12180DOI Listing

Publication Analysis

Top Keywords

weeks training
12
muscle
8
skeletal muscle
8
resistive exercise
8
whole-body vibrations
8
muscle morphology
8
rve group
8
blood volume
8
training
7
rve
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!