We studied the effect of changing drive on resetting of respiratory rhythm in anesthetized cats and in a model (Van der Pol) of a limit-cycle oscillator. In cats, rhythm was perturbed by brief mesencephalic stimuli. Stimulus time in the cycle (old phases) and times of onset of rescheduled breaths (cophases) were measured. Previous study [Paydarfar and Eldridge, Am. J. Physiol. 252 (Regulatory Integrative Comp. Physiol. 21): R55-R62, 1987] showed distinct types of phase resetting that depended on strength of stimuli. In this study, stimulus strength was kept constant, but respiratory drive was changed by increasing PCO2, by stimulating carotid sinus nerve, or by cooling intermediate areas of ventral medulla. Type 0 (strong) resetting occurred when respiratory drive was low, type 1 (weak) resetting when drive was high, and a phase singularity when drive was intermediate. Phase-resetting patterns generated by the model showed the same behavior when a drive parameter was changed. The findings support the idea that continuous limit-cycle dynamics underlie generation of respiratory rhythm. Increased respiratory drive, by increasing size of the limit cycle, reduces functional effectiveness of the same perturbing stimulus in causing phase resetting.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.1989.257.2.R271DOI Listing

Publication Analysis

Top Keywords

phase resetting
12
respiratory rhythm
12
respiratory drive
12
resetting respiratory
8
respiratory
7
drive
7
resetting
5
phase
4
rhythm
4
rhythm changing
4

Similar Publications

A knowledge gap may exist when attempting to identify the pathogenetic mechanisms resulting in the syndrome of inappropriate antidiuretic hormone (SIADH) or hypotonic hyponatremia. Ectopic secretion of antidiuretic hormone [ADH] is the classic cause of SIADH. But another form of inappropriate secretion of ADH occurs when interleukin 6 is activated.

View Article and Find Full Text PDF

Plastics reset in an adult Procellariform seabird species during the breeding season.

Mar Environ Res

December 2024

Instituto de Investigação em Ciências do Mar - OKEANOS, Universidade dos Açores, HORTA, 9900-138, Portugal.

Plastic ingestion has been extensively studied in seabirds. However, knowledge gaps remain in understanding how plastic loads behave over time and their residence inside Procellariforms. This study investigated the temporal dynamics of ingested plastics by adult Cory's shearwaters (Calonectris borealis) during the breeding season to shed light on plastic retention times.

View Article and Find Full Text PDF

Visual attention is intrinsically rhythmic and oscillates based on the discrete sampling of either single or multiple objects. Recently, studies have found that the early visual cortex (V1/V2) modulates attentional rhythms. Both monocular and binocular cells are present in the early visual cortex, which acts as a transfer station for transformation of the monocular visual pathway into the binocular visual pathway.

View Article and Find Full Text PDF

This article reports a 110.2 MHz ultra-low-power phase-locked loop (PLL) for MEMS timing/frequency reference oscillator applications. It utilizes a 6.

View Article and Find Full Text PDF

Pregametogenesis: The Earliest Stages of Gonad and Germline Differentiation in Anuran Amphibians.

Biology (Basel)

December 2024

Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland.

The gonads of amphibians, like other vertebrates, consist of somatic tissues, which create a specific environment essential for the differentiation of germline cells. The earliest stages of gametogenesis still remain underexplored in anuran amphibians. We propose to introduce the term "pregametogenesis" for a specific period of gonocyte proliferation and differentiation that occurs exclusively during the early stages of gonadal development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!