Arbuscular mycorrhizal (AM) fungi accumulate a massive amount of phosphate as polyphosphate to deliver to the host, but the underlying physiological and molecular mechanisms have yet to be elucidated. In the present study, the dynamics of cationic components during polyphosphate accumulation were investigated in conjunction with transcriptome analysis. Rhizophagus sp. HR1 was grown with Lotus japonicus under phosphorus-deficient conditions, and extraradical mycelia were harvested after phosphate application at prescribed intervals. Levels of polyphosphate, inorganic cations and amino acids were measured, and RNA-Seq was performed on the Illumina platform. Phosphate application triggered not only polyphosphate accumulation but also near-synchronous and near-equivalent uptake of Na(+) , K(+) , Ca(2+) and Mg(2+) , whereas no distinct changes in the levels of amino acids were observed. During polyphosphate accumulation, the genes responsible for mineral uptake, phosphate and nitrogen metabolism and the maintenance of cellular homeostasis were up-regulated. The results suggest that inorganic cations play a major role in neutralizing the negative charge of polyphosphate, and these processes are achieved by the orchestrated regulation of gene expression. Our findings provide, for the first time, a global picture of the cellular response to increased phosphate availability, which is the initial process of nutrient delivery in the associations.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.12937DOI Listing

Publication Analysis

Top Keywords

polyphosphate accumulation
16
inorganic cations
12
near-synchronous near-equivalent
8
near-equivalent uptake
8
arbuscular mycorrhizal
8
phosphate application
8
amino acids
8
polyphosphate
7
phosphate
5
accumulation driven
4

Similar Publications

Effects of sewage sludge ash as a recycled phosphorus source on the soil microbiome.

Curr Opin Biotechnol

January 2025

Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, USA. Electronic address:

Ash byproducts have been used as soil amendments to recycle nutrients and modify soil properties such as pH or density. Interest in these practices has continued with increasing emphasis on sustainability, particularly regarding phosphorus reuse from incinerated sewage sludge. Given recent advancements in microbial analyses, the impacts of these practices can now be studied from the soil microbiome perspective.

View Article and Find Full Text PDF

Multi-omics reveals mechanism of hydroxylamine-enhanced ultimate nitrogen removal in pilot-scale anaerobic/aerobic/anoxic system.

Water Res

January 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China. Electronic address:

Hydroxylamine (HA) dosing is an effective strategy for promoting partial nitrification (PN); however, its impact on endogenous denitrification remains underexplored. In this study, long-term continuous HA dosing (1.4 mg/L) was introduced for over 110 days in a pilot-scale anaerobic/aerobic/anoxic (AOA) system treating municipal wastewater (66.

View Article and Find Full Text PDF

Background: Enhanced biological phosphorus removal (EBPR) systems utilize phosphorus-accumulating organisms (PAOs) to remove phosphorus from wastewater since excessive phosphorus in water bodies can lead to eutrophication. This study aimed to characterize a newly isolated PAO strain for its potential application in EBPR systems and to screen for additional biotechnological potential. Here, sequencing allowed for genomic analysis, identifying the genes and molecules involved, and exploring other potentials.

View Article and Find Full Text PDF

Secondary transport mechanisms in amino acid fed enhanced biological phosphorus removal.

Chemosphere

January 2025

Gerald May Department of Civil, Construction, and Environmental Engineering, The University of New Mexico, Albuquerque, NM, 87131, United States. Electronic address:

Enhanced biological phosphorus removal (EBPR) water resource recovery facilities (WRRFs) often fail to meet phosphorus discharge permit limits, indicating a need to improve EBPR to reduce environmental phosphorus discharges. EBPR designs are largely based on the Accumulibacter polyphosphate accumulating organism (PAO) metabolism, while understudied Tetrasphaera PAOs are equally important to EBPR in many facilities worldwide. Anaerobic organic carbon competition is believed to be a key driver of EBPR reliability.

View Article and Find Full Text PDF

Light intensity-regulated glycogen synthesis and pollutant removal in microalgal-bacterial granular sludge for wastewater treatment.

Water Res

March 2025

Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.

As light intensity plays a pivotal role in the microalgal-bacterial granular sludge (MBGS) process, understanding its impact on system performance and energy dynamics is essential. This study investigated the effects of varying light intensities (20, 100, 200, and 300 μ mol/m²/s) on the performance of MBGS in urban wastewater treatment, with a particular focus on glycogen accumulation and pollutant removal. The results demonstrated that light intensity significantly influenced microbial community structure, glycogen accumulation, and pollutant removal efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!