Grapes are an important economic crop and are widely cultivated around the world. Most grapes are grown in arid or semi-arid regions, and droughts take a heavy toll in grape and wine production areas. Developing effective drought-resistant cultivation measures is a priority for viticulture. Melatonin, an indoleamine, mediates many physiological processes in plants. Herein, we examined whether exogenously applied melatonin could improve the resistance of wine grape seedlings grown from cuttings to polyethylene glycol-induced water-deficient stress. The application of 10% polyethylene glycol (PEG) markedly inhibited the growth of cuttings, caused oxidative stress and damage from H2 O2 and O2∙-, and reduced the potential efficiency of Photosystem II and the amount of chlorophyll. Application of melatonin partially alleviated the oxidative injury to cuttings, slowed the decline in the potential efficiency of Photosystem II, and limited the effects on leaf thickness, spongy tissue, and stoma size after application of PEG. Melatonin treatment also helped preserve the internal lamellar system of chloroplasts and alleviated the ultrastructural damage induced by drought stress. This ameliorating effect may be ascribed to the enhanced activity of antioxidant enzymes, increased levels of nonenzymatic antioxidants, and increased amount of osmoprotectants (free proline). We conclude that the application of melatonin to wine grapes is effective in reducing drought stress.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpi.12159DOI Listing

Publication Analysis

Top Keywords

water-deficient stress
8
potential efficiency
8
efficiency photosystem
8
application melatonin
8
drought stress
8
melatonin
6
stress
5
ameliorative effects
4
effects exogenous
4
exogenous melatonin
4

Similar Publications

Introduction: Drought stress severely hampers seedling growth and root architecture, resulting in yield penalties. Seed priming is a promising approach to tolerate drought stress for stand establishment and root development.

Methods: Here, various seed priming treatments, .

View Article and Find Full Text PDF

Dinanath grass (Pennisetum pedicellatum Trin.) is an extensively grown forage grass known for its significant drought resilience. In order to comprehensively grasp the adaptive mechanism of Dinanath grass in response to water deficient conditions, transcriptomic and metabolomics were applied in the leaves of Dinanath grass exposed to two distinct drought intensities (48-hour and 96-hour).

View Article and Find Full Text PDF

Mechanisms underlying grapevine responses to water(-deficient) stress (WS) are crucial for viticulture amid escalating climate change challenges. Reanalysis of previous transcriptome data uncovered disparities among isohydric and anisohydric grapevine cultivars in managing water scarcity. By using a self-organizing map (SOM) transcriptome portrayal, we elucidate specific gene expression trajectories, shedding light on the dynamic interplay of transcriptional programs as stress duration progresses.

View Article and Find Full Text PDF

Drought is a primary ecological stress limiting wheat yield in water-deficient regions. Conducting targeted genetic selection of wheat cultivars can expedite the adaptation process of wheat to the climatic conditions of the region, allowing for the identification of high-yielding varieties with stable genetic traits. This study investigated the impact of the TaGW8 and TaGS3A genes, known for their contribution to wheat productivity.

View Article and Find Full Text PDF

Invasive plant species support each other's growth in low-nutrient conditions but compete when nutrients are abundant.

Ecology

October 2024

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.

Globally, numerous ecosystems have been co-invaded by multiple exotic plant species that can have competitive or facilitative interactions with each other and with native plants. Invaded ecosystems often exhibit spatial heterogeneity in soil moisture and nutrient levels, with some habitats having more nutrient-rich and moist soils than others. The stress-gradient hypothesis predicts that plants are likely to engage in facilitative interactions when growing in stressful environments, such as nutrient-deficient or water-deficient soils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!