The global shortage of fresh water is one of our most severe agricultural problems, leading to dry and saline lands that reduce plant growth and crop yield. Here we review recent work highlighting the molecular mechanisms allowing some plant species and genotypes to maintain productivity under water stress conditions, and suggest molecular modifications to equip plants for greater production in water-limited environments. Aquaporins (AQPs) are thought to be the main transporters of water, small and uncharged solutes, and CO2 through plant cell membranes, thus linking leaf CO2 uptake from the intercellular airspaces to the chloroplast with water loss pathways. AQPs appear to play a role in regulating dynamic changes of root, stem and leaf hydraulic conductivity, especially in response to environmental changes, opening the door to using AQP expression to regulate plant water-use efficiency. We highlight the role of vascular AQPs in regulating leaf hydraulic conductivity and raise questions regarding their role (as well as tonoplast AQPs) in determining the plant isohydric threshold, growth rate, fruit yield production and harvest index. The tissue- or cell-specific expression of AQPs is discussed as a tool to increase yield relative to control plants under both normal and water-stressed conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.12410DOI Listing

Publication Analysis

Top Keywords

water-use efficiency
8
leaf hydraulic
8
hydraulic conductivity
8
plant
5
aqps
5
role
4
role aquaporins
4
aquaporins determining
4
determining transpiration
4
transpiration photosynthesis
4

Similar Publications

Medicinal and aromatic plant (MAP) production is gaining popularity for industrial agriculture, with phytochemical compounds having a significant impact on human health. Plant fertilization must be carefully considered as it is strongly affecting the biochemical profile of MAPs. The present study examined the responses to different nitrogen (N: 75, 150, and 300 mg/L), potassium (K: 150, 350, and 550 mg/L), and phosphorus (P: 50, 75, and 100 mg/L) concentration in the nutrient solution (NS) in hydroponics.

View Article and Find Full Text PDF

Changes in water, energy, and food (WEF) trade patterns may reshape water circulation patterns, leading to potential water supply and demand risks. Analysis of virtual water risk transmission characteristics and driving factors from the perspective of WEF trade is highly important for alleviating the risk of water shortages and promoting the efficient use of resources. In this paper, a set of methods for quantifying risk transmission values is constructed on the basis of China's interregional input-output model, and the key paths of interregional virtual water risk transmission caused by WEF trade are identified using innovative methods.

View Article and Find Full Text PDF

The anatomical reorganization required for C photosynthesis should also impact plant hydraulics. Most C plants possess large bundle sheath cells and high vein density, which should also lead to higher leaf capacitance and hydraulic conductance (K). Paradoxically, the C pathway reduces water demand and increases water use efficiency, creating a potential mismatch between supply capacity and demand in C plant water relations.

View Article and Find Full Text PDF
Article Synopsis
  • Urbanization is affecting landscapes and ecosystems, particularly in urban areas where trees play a vital role in regulating climate, air quality, and biodiversity.
  • This study focuses on comparing tree leaf structures and environmental conditions between urban and suburban sites in the Chicago area, using Norway Maple and Little-leaved Linden as subjects.
  • The research found that urban areas had higher temperatures and greater leaf trait variations, with Norway Maple showing higher gas exchange rates in urban settings, indicating greater water loss compared to suburban sites.
View Article and Find Full Text PDF

In the context of climate change, reducing the environmental impact of agriculture has become increasingly critical. To ensure sustainable food production, it is essential to adopt cultivation techniques that maximize resource efficiency, particularly in water and nutrient usage. The Nutrient Film Technique (NFT) is one such hydroponic system, designed to optimize water and nutrient use, making it a valuable tool for sustainable agriculture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!