The stem bark of Polyalthia oliveri was screened for its chemical constituents using liquid chromatography high resolution mass spectrometry resulting in the isolation of three indolosesquiterpene alkaloids named 8α-polyveolinone (1), N-acetyl-8α-polyveolinone (2) and N-acetyl-polyveoline (3), together with three known compounds, dehydro-O-methylisopiline (4), N-methylurabaine (5) and polycarpol (6). The structures of the compounds were elucidated by means of high resolution mass spectrometry and different NMR techniques and chemical transformations. Their absolute configurations were assigned by ab-initio calculation of CD and ORD data (for 2 and 3) and X-ray diffraction analysis (for 2). Compounds 2 and 3 exhibited moderate antiplasmodial activity against erythrocytic stages of chloroquine-sensitive Plasmodium falciparum NF54 strain and low cytotoxicity on rat skeletal myoblast (L6) cell line.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phytochem.2014.06.015 | DOI Listing |
Chem Commun (Camb)
September 2024
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
We have accomplished a unified strategy to achieve the structurally intriguing indolosesquiterpene alkaloids with diverse biological activity, xiamycin A (1a), xiamycin A methyl ester (1b) and oridamycins A (2a), and B (2b), which possesses a complex 6/6/6/5/6-fused pentacyclic skeleton bearing a carbazole moiety fused with a highly functionalized -decalin motif. Lewis acid-mediated epoxy-ene cyclization establishes the required pentacyclic scaffold with the installation of the four contiguous stereogenic centers. Further oxidative cleavage of the vinyl functionality, followed by successive functional group interconversions, completed the total synthesis of the indolosesquiterpene alkaloids.
View Article and Find Full Text PDFDimeric indolosesquiterpene alkaloids, typically N-N- and C-N-linked xiamycin dimers, feature a pentacyclic framework with four contiguous stereogenic centers at the periphery of a -decalin scaffold to which a carbazole unit is attached. In comparison with actual biosynthetic dixiamycin derivatives, we designed C-C-linked xiamycin dimers, aiming to use them as a powerful tool to create unique scaffolds as drug candidates. In this work, we disclose the first synthetic route to access a C-C dimeric indolosesquiterpene skeleton, featuring a hypervalent iodine (PIFA)-catalyzed oxidative dimerization reaction in a single-step operation with overwhelming control over the chemoselectivity and regioselectivity.
View Article and Find Full Text PDFN-N dimeric indolosesquiterpene alkaloids constitute a class of under-investigated architecturally intriguing natural products. Herein, we report the first chemical oxidation approach to the asymmetric total syntheses of these atropisomeric indolosesquiterpenoids through N-N bond formation. Specifically, dixiamycins A (1a) and B (1b) were prepared through a Cu(i)-mediated aerobic dehydrogenative dimerization from the naturally occurring monomer xiamycin A methyl ester (2b); this preparation also represents the first total synthesis of dixiamycin A (1a).
View Article and Find Full Text PDFConcise total syntheses of naturally occurring antiviral indolosesquiterpene alkaloids, xiamycin C (2a), D (2b), E (2c) and F (2d), have been achieved a late-stage oxidative δ-Csp-H functionalization of an advanced pentacyclic enone intermediate 8. This strategy takes advantage of -nitration of naturally occurring abietane diterpenoids to synthesize -bromo nitroarene derivative 11. A Suzuki-Miyaura coupling of 11 with phenylboronic acid followed by Cadogan's ring closure provided a modular approach to a carbazole ring required for a functionalized pentacyclic core of indolosesquiterpene alkaloids.
View Article and Find Full Text PDFOrg Lett
June 2016
Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
Short and scalable synthesis of the complex pentacyclic indolosesquiterpene natural product mycoleptodiscin A has been achieved from commercially available diterpenoid (+)-sclareolide in 19% overall yield. This approach allows one to prepare various analogues of mycoleptodiscin using McMurry cyclization as a key reaction with just three chromatographic purifications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!