Rhipicephalus (Boophilus) microplus is an obligate haematophagous arthropod and the major problem for cattle industry due to economic losses it causes. The parasite shows a remarkable adaptability to changing environmental conditions as well as an exceptional ability to survive long-term starvation. This ability has been related to a process of intracellular protein degradation called autophagy. This process in ticks is still poorly understood and only few autophagy-related (ATG) genes have been characterized. The aim of the present study was to examine the ESTs database, BmiGI, of R. microplus searching for ATG homologues. We predicted five putative ATG genes, ATG3, ATG4, ATG6 and two ATG8s. Further characterization led to the identification of RmATG8a and RmATG8b, homologues of GABARAP and MAP1LC3, respectively, and both of them belonging to the ATG8 family. PCR analyses showed that the expression level of RmATG8a and RmATG8b was higher in egg and larval stages when compared to ovary and midgut from adult ticks. This up-regulation coincides with the period in which ticks are in a starvation state, suggesting that autophagy is active in R. microplus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10493-014-9838-3 | DOI Listing |
Commun Biol
November 2024
Institute of Cell Biology, University of Bern, Bern, Switzerland.
PLoS Comput Biol
February 2024
Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Budapest, Hungary.
The pathogenic, tropical Leishmania flagellates belong to an early-branching eukaryotic lineage (Kinetoplastida) with several unique features. Unfortunately, they are poorly understood from a molecular biology perspective, making development of mechanistically novel and selective drugs difficult. Here, we explore three functionally critical targeting short linear motif systems as well as their receptors in depth, using a combination of structural modeling, evolutionary sequence divergence and deep learning.
View Article and Find Full Text PDFFront Plant Sci
February 2022
Department of Biology, McGill University, Montreal, QC, Canada.
ROOT HAIR DEFECTIVE3 (RHD3) is a plant member of atlastin GTPases, which belong to an evolutionally conserved family of proteins that mediate the homotypic fusion of the endoplasmic reticulum (ER). An atlastin in mammalian cells has recently been shown to act as an ER-phagy receptor for selective autophagy of the ER (ER-phagy) during nutrient starvation. Although RHD3 has been indicated to play a role in ER stress response, it is not very clear how RHD3 is involved in the process.
View Article and Find Full Text PDFJ Biol Chem
February 2022
Centre for Biomolecular Sciences, School of Chemistry, University Park, University of Nottingham, Nottingham, UK. Electronic address:
Recognition of human autophagy-related 8 (hATG8) proteins by autophagy receptors represents a critical step within this cellular quality control system. Autophagy impairment is known to be a pathogenic mechanism in the motor neuron disorder amyotrophic lateral sclerosis (ALS). Overlapping but specific roles of hATG8 proteins belonging to the LC3 and GABARAP subfamilies are incompletely understood, and binding selectivity is typically overlooked.
View Article and Find Full Text PDFElife
September 2021
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.
Autophagy is a cellular process that degrades cytoplasmic cargo by engulfing it in a double-membrane vesicle, known as the autophagosome, and delivering it to the lysosome. The ATG12-5-16L1 complex is responsible for conjugating members of the ubiquitin-like ATG8 protein family to phosphatidylethanolamine in the growing autophagosomal membrane, known as the phagophore. ATG12-5-16L1 is recruited to the phagophore by a subset of the phosphatidylinositol 3-phosphate-binding seven-bladedß -propeller WIPI proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!