Functional significance of long non-coding RNAs in breast cancer.

Breast Cancer

School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS, UK,

Published: September 2014

Most of the genome is transcribed to transcripts of no protein-coding potential. However, these transcripts do not represent transcriptional 'noise', rather they play an important role in cellular metabolism and development. Non-coding transcripts of 200 bases to 100 kb length are termed as long non-coding RNAs, majority of which are yet to be characterised thoroughly. Long non-coding RNAs (lncRNAs) play a significant role in cellular process ranging from transcriptional to post-transcriptional regulation. In this review, we highlight the recent efforts to characterise the major functions of lncRNAs in breast cancer. lncRNA expression is altered in several cancer types. Further, the aberrant regulation of lncRNAs promotes tumour development as they are involved in several cancer-associated pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12282-014-0554-yDOI Listing

Publication Analysis

Top Keywords

long non-coding
12
non-coding rnas
12
breast cancer
8
play role
8
role cellular
8
functional significance
4
significance long
4
non-coding
4
rnas breast
4
cancer genome
4

Similar Publications

A high-throughput sequencing identified 1283 lncRNAs in anthers at different stages in Arabidopsis and their relationship with protein-coding genes and miRNAs during anther and pollen development were analyzed. Long non-coding RNAs (lncRNAs) are important regulatory molecules involved in various biological processes. However, their roles in male reproductive development and interactions with miRNAs remained elusive.

View Article and Find Full Text PDF

Vitiligo is a common skin depigmentation condition caused by selective destruction of melanocytes. It is regarded as a polygenic disorder. In addition to protein-coding loci, non-coding regions of the genome contribute to the pathogenesis of vitiligo.

View Article and Find Full Text PDF

The Impact of Epigenetics on the Pathophysiology of Type 2 Diabetes and Associated Nephropathic Complications.

Indian J Endocrinol Metab

December 2024

Rajiv Gandhi Centre for Diabetes and Endocrinology, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.

Type 2 diabetes (T2D) is a long-term metabolic condition that presents considerable health challenges globally. As the disease progresses, the interplay between genetic, environmental, and lifestyle factors becomes increasingly evident, leading to complications. Epigenetics has emerged as a critical area of research, providing insights into how these factors can modify the expression and cellular behavior without altering the underlying DNA sequence.

View Article and Find Full Text PDF

Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression.

View Article and Find Full Text PDF

Cells preserve and convey certain gene expression patterns to their progeny through the mechanism called epigenetic memory. Epigenetic memory, encoded by epigenetic markers and components, determines germline inheritance, genomic imprinting, and X chromosome inactivation. First discovered long non coding RNAs were implicated in genomic imprinting and X-inactivation and these two phenomena clearly demonstrate the role of lncRNAs in epigenetic memory regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!