Identification and characterization of a Macrobrachium nipponense ferritin subunit regulated by iron ion and pathogen challenge.

Fish Shellfish Immunol

Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.

Published: September 2014

Ferritin, a major iron storage protein in most living organisms, plays a crucial role in iron metabolism. In this study, the ferritin subunit MnFer was identified in the oriental river prawn (Macrobrachium nipponense) and functionally characterized. The full-length cDNA of MnFer is 999 bp in size with a 122-bp 5'-untranslated region (UTR), a 364-bp 3'-UTR and a 513-bp open reading frame that encodes a protein possessing 171 amino acids and a deduced molecular weight of 19.40 kDa. Prawn ferritin transcripts are expressed in muscle, heart, hepatopancreas, gill, hemocytes, ovary and testis. Quantitative real-time PCR revealed that the abundance of ferritin transcript was highest in the hepatopancreas followed by muscle. Ferritin transcript expression in muscle increased six-fold 3 h after the injection of iron. In the gill, a four-fold increase in ferritin transcript expression was detected 3 h post-injection; the expression remained elevated for 48 h. Heart ferritin mRNA expression increased up to seven-fold at 24 h post-injection. No significant difference was found in the hepatopancreas. The iron binding capacity of recombinant ferritin protein was also demonstrated in this study. In hemocyte experiments, the transcriptional expression of MnFer showed the strongest response to Aeromonas hydrophila. As a whole, our study suggested that the ferritin from M. nipponense may play critical roles in cellular and organismic iron homeostasis along with in innate immune defense.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2014.07.002DOI Listing

Publication Analysis

Top Keywords

ferritin transcript
12
ferritin
10
macrobrachium nipponense
8
ferritin subunit
8
transcript expression
8
iron
6
expression
5
identification characterization
4
characterization macrobrachium
4
nipponense ferritin
4

Similar Publications

Background And Objectives: The interplay of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and infection (CDI) poses a critical clinical challenge. The resultant inflammatory milieu and its impact on outcomes remain incompletely understood, especially among vulnerable subgroups such as elderly patients, those with diabetes, and individuals with cancer. This study aimed to characterize inflammatory markers and composite inflammatory severity scores-such as Acute Physiology and Chronic Health Evaluation II (APACHE II), Confusion, Urea, Respiratory rate, Blood pressure, and age ≥ 65 years (CURB-65), National Early Warning Score (NEWS), and the Systemic Immune-Inflammation Index (SII)-in hospitalized Coronavirus Disease 2019 (COVID-19) patients with and without CDI, and to evaluate their prognostic implications across key clinical subgroups.

View Article and Find Full Text PDF

Impact of p. Gingivalis-induced chronic apical periodontitis on systemic iron homeostasis via the hepatic IL-6/STAT3/Hepcidin signaling pathway.

Int Immunopharmacol

February 2025

State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. Electronic address:

Background And Aims: Chronic apical periodontitis (CAP), an inflammatory disease of the oral cavity caused by bacterial infections with Porphyromonas gingivalis (P. gingivalis) as a key pathogen, has been associated with systemic effects, potentially influencing distant organs including liver. The liver plays a key role in iron metabolism and immunity by hepcidin.

View Article and Find Full Text PDF

Background And Aims: Cell-cycle-related and expression elevated protein in tumor (CREPT, also named RPRD1B) is highly expressed in tumors and functions to promote tumorigenesis. However, the role of CREPT in the pathophysiology of acute liver injury is limited. Here, we demonstrate that CREPT plays an essential role during acute liver injury.

View Article and Find Full Text PDF

Targeting Iron Responsive Elements (IREs) of APP mRNA into Novel Therapeutics to Control the Translation of Amyloid-β Precursor Protein in Alzheimer's Disease.

Pharmaceuticals (Basel)

December 2024

Department of Life Science, College of Science and General Studies, Alfaisal University, Riyadh 11533, Saudi Arabia.

The hallmark of Alzheimer's disease (AD) is the buildup of amyloid-β (Aβ), which is produced when the amyloid precursor protein (APP) misfolds and deposits as neurotoxic plaques in the brain. A functional iron responsive element (IRE) RNA stem loop is encoded by the APP 5'-UTR and may be a target for regulating the production of Alzheimer's amyloid precursor protein. Since modifying Aβ protein expression can give anti-amyloid efficacy and protective brain iron balance, targeted regulation of amyloid protein synthesis through modulation of 5'-UTR sequence function is a novel method for the prospective therapy of Alzheimer's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!