While virulence factors and the biofilm-forming capabilities of microbes are the key regulators of the wound healing process, the host immune response may also contribute in the events following wound closure or exacerbation of non-closure. We examined samples from diabetic and non-diabetic foot ulcers/wounds for microbial association and tested the microbes for their antibiotic susceptibility and ability to produce biofilms. A total of 1074 bacterial strains were obtained with staphylococci, Pseudomonas, Citrobacter and enterococci as major colonizers in diabetic samples. Though non-diabetic samples had a similar assemblage, the frequency of occurrence of different groups of bacteria was different. Gram-negative bacteria were found to be more prevalent in the diabetic wound environment while Gram-positive bacteria were predominant in non-diabetic ulcers. A higher frequency of monomicrobial infection was observed in samples from non-diabetic individuals when compared to samples from diabetic patients. The prevalence of different groups of bacteria varied when the samples were stratified according to age and sex of the individuals. Several multidrug-resistant strains were observed among the samples tested and most of these strains produced moderate to high levels of biofilms. The weakened immune response in diabetic individuals and synergism among pathogenic micro-organisms may be the critical factors that determine the delicate balance of the wound healing process.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.076034-0DOI Listing

Publication Analysis

Top Keywords

wound healing
8
healing process
8
immune response
8
samples diabetic
8
samples non-diabetic
8
groups bacteria
8
observed samples
8
samples
7
diabetic
6
characteristics microbial
4

Similar Publications

Multidrug resistance (MDR) infectious wounds are a major concern due to drug resistance, leading to increased patient morbidity. Lichenysin (LCN), a lipopeptide and biosurfactant obtained from certain strains of , has demonstrated an excellent antimicrobial property. The present study focuses on the fabrication and comprehensive evaluation of LCN-incorporated poly(vinyl alcohol) (PVA)/polycaprolactone (PCL)-based nanofiber scaffolds using an electrospinning technique as a potential wound healing biomaterial for the treatment of MDR infectious wounds in diabetic rats.

View Article and Find Full Text PDF

This study aimed to perform chemical characterization of black raspberry seed oil (Rubus occidentalis L., Rosaceae) from Serbia in terms of fatty acids and tocols composition, total carotenoid content, as well as to investigate its antioxidant/antimicrobial activities and in vitro wound-healing potential. GC/MS analysis revealed that linoleic (39.

View Article and Find Full Text PDF

The current research emphasis is on the development of wound dressings that can inhibit bacterial infections and facilitate the treatment of complex wound healing processes. In this study, nanofibrous mats of polyvinyl alcohol/chitosan/ZIF-67(PVA/Cs/ZIF-67) were prepared using an electrospinning technique, to investigate their antibacterial and regenerative properties in a rat model of full-thickness skin wounds. ZIF-67 nanoparticles, with an average size of approximately 373.

View Article and Find Full Text PDF

Electrospun pectin nanofibers have emerged as a transformative advancement in biomaterials, offering remarkable potential across diverse biomedical and industrial applications. This review explores the synthesis, optimization, and versatile applications of electrospun pectin nanofibers, highlighting their unique properties, including biocompatibility, biodegradability, and adaptability for functionalization. Pectin's structural diversity, coupled with its ability to form hydrogels and interact with biological systems, makes it a promising candidate for wound healing, drug delivery, tissue engineering, and smart packaging.

View Article and Find Full Text PDF

Pulmonary fibrosis encompasses different chronic interstitial lung diseases, and the predominant form, idiopathic pulmonary fibrosis, remains to have a poor prognosis despite 2 approved therapies. Although the exact pathobiological mechanisms are still incompletely understood, epithelial injury and aberrant wound healing responses contribute to the gradual change in lung architecture and functional impairment. Lysophosphatidic acid (LPA)-induced lysophosphatidic receptor 1 (LPA1) signaling was proposed to be a driver of lung fibrosis, and LPA1 antagonists have shown promising antifibrotic profiles in early clinical development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!