Canonical Wnt signaling plays crucial roles during development and disease. How Wnt signaling is modulated in different in vivo contexts is currently not well understood. Here, we investigate the modulation of Wnt signaling in the posterior lateral line primordium (pLLP), a cohort of ~100 cells that collectively migrate along the trunk of the zebrafish embryo. The pLLP comprises proliferative progenitor cells and organized epithelial cells that will form the mechanosensory organs of the posterior lateral line. Wnt signaling is active in the leading progenitor zone of the pLLP and restricted from the trailing zone through expression of the secreted Wnt inhibitors dkk1b and dkk2. We have identified a zebrafish strain, krm1(nl10), which carries a mutation in the kremen1 gene, a non-obligate co-receptor for the Dkk family of proteins. Previous studies have shown that Kremen1 inhibits Wnt signaling by facilitating internalization of the Kremen1-Dkk-Lrp5/6 complex. Surprisingly, we found that disruption of Kremen1 in the pLLP exhibited molecular and cellular phenotypes associated with a decrease rather than overactivation of Wnt signaling. Transplantation of wild-type cells into the mutant primordia failed to rescue the krm1(nl10) phenotype, thus revealing that the effects of Kremen1 loss are non-cell-autonomous. Finally, ectopic expression of Dkk1b-mTangerine protein revealed larger spread of the fusion protein in the mutant primordia compared with the wild type. Based on our data, we propose a novel mechanism in which Kremen1 modulates Wnt activity by restricting the range of secreted Dkk proteins during collective cell migration in the pLLP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197539 | PMC |
http://dx.doi.org/10.1242/dev.102541 | DOI Listing |
Ann Gen Psychiatry
January 2025
Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Schizophrenia is one of the most debilitating mental illnesses affecting any age group. The mechanism and etiology of schizophrenia are extremely complex and multiple signaling pathways recruit genes implicated in the etiology of this disease. While the role of Wnt/β-catenin signaling in this disorder has been verified, the impact of long noncoding RNAs (lncRNAs) associated with this pathway has not been studied in schizophrenia.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA.
Osteosarcoma (OS) is the most common primary bone malignancy. The canonical Wnt inhibitor Dickkopf-1 (Dkk-1) has been implicated in bone destruction, tumor survival and metastases during OS. We examined the role of Dkk-1 in OS disease progression and explored strategies for targeting its activity.
View Article and Find Full Text PDFMech Ageing Dev
January 2025
Department of Medicine, Divisions of Geriatric Medicine and Gerontology, the Department of Physiology and Biomedical Engineering, and the Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota. Electronic address:
Preclinical models of age-related osteoporosis have been developed based on the accumulation and clearance of senescent cells. The former include animal models based on telomere dysfunction and focal radiation; the latter based on genetic and pharmacological targeting (i.e.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India.
This review explores the current understanding and recent advancements in neuroblastoma, one of the most common extracranial solid pediatric cancers, accounting for ~ 15% of childhood cancer-related mortality. The hallmarks of NBL, including angiogenesis, metastasis, apoptosis resistance, cell cycle dysregulation, drug resistance, and responses to hypoxia and ROS, underscore its complex biology. The tumor microenvironment's significance in disease progression is acknowledged in this study, along with the pivotal role of cancer stem cells in sustaining tumor growth and heterogeneity.
View Article and Find Full Text PDFThe central nervous system (CNS) parenchyma has conventionally been believed to lack lymphatic vasculature, likely due to a non-permissive microenvironment that hinders the formation and growth of lymphatic endothelial cells (LECs). Recent findings of ectopic expression of LEC markers including Prospero Homeobox 1 (PROX1), a master regulator of lymphatic differentiation, and the vascular permeability marker Plasmalemma Vesicle Associated Protein (PLVAP), in certain glioblastoma and brain arteriovenous malformations (AVMs), has prompted investigation into their roles in cerebrovascular malformations, tumor environments, and blood-brain barrier (BBB) abnormalities. To explore the relationship between ectopic LEC properties and BBB disruption, we utilized endothelial cell-specific overexpression mutants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!