Background: Porphyromonas gingivalis is an important bacterial etiological agent involved in periodontitis. The bacterium expresses two kinds of cysteine proteases called gingipains: arginine gingipains (RgpA/B) and lysine gingipain (Kgp). This study evaluated the interaction between P. gingivalis and THP-1 cells, a widely used monocytic cell line, in vitro with a focus on CXCL8 at the gene and protein levels and its fate thereafter in cell culture supernatants. THP-1 cells were stimulated with viable and heat-killed wild-type strains ATCC 33277 or W50 or viable isogenic gingipain mutants of W50, E8 (Rgp mutant) or K1A (Kgp mutant), for 24 hours.
Results: ELISA and qPCR results show an elevated CXCL8 expression and secretion in THP-1 cells in response to P. gingivalis, where the heat-killed ATCC33277 and W50 induced higher levels of CXCL8 in comparison to their viable counterparts. Furthermore, the Kgp-deficient mutant K1A caused a higher CXCL8 response compared to the Rgp-deficient E8. Chromogenic quantification of lipopolysaccharide (LPS) in supernatant showed no significant differences between viable and heat killed bacteria except that W50 shed highest levels of LPS. The wild-type strains secreted relatively more Rgp during the co-culture with THP-1 cells. The CXCL8 degradation assay of filter-sterilized supernatant from heat-killed W50 treated cells showed that Rgp was most efficient at CXCL8 hydrolysis. Of all tested P. gingivalis strains, adhesion and internalization in THP-1 cells was least conspicuous by Rgp-deficient P. gingivalis (E8), as demonstrated by confocal imaging.
Conclusions: W50 and its Kgp mutant K1A exhibit a higher immunogenic and proteolytic function in comparison to the Rgp mutant E8. Since K1A differs from E8 in the expression of Rgp, it is rational to conclude that Rgp contributes to immunomodulation in a more dynamic manner in comparison to Kgp. Also, W50 is a more virulent strain when compared to the laboratory strain ATCC33277.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4115476 | PMC |
http://dx.doi.org/10.1186/1471-2180-14-193 | DOI Listing |
Theranostics
January 2025
Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
Macrophage phagocytosis plays a role in cancer immunotherapy. The phagocytic activity of macrophages, regulated by circadian clock genes, shows time-dependent variation. Intervening in the circadian clock machinery of macrophages is a potentially novel approach to cancer immunotherapy; however, data on this approach are scarce.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
The human voltage-gated proton channel (H1) provides an efficient proton extrusion pathway from the cytoplasm contributing to the intracellular pH regulation and the oxidative burst. Although its pharmacological inhibition was previously shown to induce cell death in various cell types, no such effects have been examined in polarized macrophages albeit H1 was suggested to play important roles in these cells. This study highlights that 5-chloro-2-guanidinobenzimidazole (ClGBI), the most widely applied H1 inhibitor, reduces the viability of human THP-1-derived polarized macrophages at biologically relevant doses with M1 macrophages being the most, and M2 cells the least sensitive to this compound.
View Article and Find Full Text PDFNeoplasia
December 2024
Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) is characterized by its aggressive nature and dismal prognosis, largely attributed to its unique tumor microenvironment. However, the molecular mechanisms by which tumor-associated macrophages (TAMs) promote PDAC progression, particularly the role of β-catenin signaling in regulating TAM phenotype and function, remain incompletely understood. Initially, we performed comprehensive analyses of RNA-seq and single-cell RNA-seq (scRNA-seq) datasets to investigate OSM and LOXL2 expression patterns in PDAC.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China. Electronic address:
Bromodomain-containing protein 4 (BRD4) has been identified as a promising target in drug discovery, and the development of novel specific BRD4 bromodomain inhibitors will benefit anti-inflammatory drug discovery as well as bromodomain function role disclose. Herein, inspired by marine quinazolinone alkaloid penipanoid C, we designed and synthesized a series of quinazolin-4(3H)-ones with diverse linkers between two aromatic ring systems. Among them, compound 25 possessed good in vitro BRD4 inhibitory activities (IC = 3.
View Article and Find Full Text PDFPLoS One
December 2024
Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, Republic of Korea.
Th2 inflammation and epithelial-mesenchymal transition (EMT) play crucial roles in the pathophysiology of chronic rhinosinusitis with nasal polyps (CRSwNP). This study aimed to investigate the hypothesis that MMP-12, produced by M2 macrophages, induces EMT in nasal epithelial cells, thereby contributing to airway inflammation and remodeling in CRSwNP. The expression levels of MMP-12 were measured by RT-PCR in CRS nasal mucosa and THP-1 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!