Effect of amylose:amylopectin ratio and rice bran addition on starch films properties.

Carbohydr Polym

Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.

Published: October 2014

The influence of the amylose:amylopectin ratio on the properties of pea, potato and cassava starch films and the effect of the incorporation of rice bran of two different particle sizes were studied. The structural, mechanical, optical and barrier properties of the films were analyzed after 1 and 5 weeks. The high content of amylose gave rise to stiffer, more resistant to fracture, but less stretchable films, with lower oxygen permeability and greater water binding capacity. Although no changes in the water vapour permeability values of the films were observed during storage, their oxygen permeability decreased. Throughout storage, films became stiffer, more resistant to break, but less stretchable. Rice bran with the smallest particles improved the elastic modulus of the films, especially in high amylose content films, but reduced the film stretchability and its barrier properties, due to the enhancement of the water binding capacity and the introduction of discontinuities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2014.04.075DOI Listing

Publication Analysis

Top Keywords

rice bran
12
amyloseamylopectin ratio
8
films
8
starch films
8
barrier properties
8
stiffer resistant
8
oxygen permeability
8
water binding
8
binding capacity
8
ratio rice
4

Similar Publications

: This study explores the impact of brown rice bran powder (BRBP), known for its beneficial components, such as dietary fiber and γ-oryzanol, on individuals suffering from metabolic syndrome (MetS). /: In this eight-week open-label controlled trial, fifty participants with MetS were randomly assigned to either a control group, which received a standard diet (SDiet), or an intervention group, which incorporated 15 grams of BRBP daily into their diet. Demographic, anthropometric and clinical data were collected, and blood samples were taken to assess metabolic factors and antioxidant enzyme activities.

View Article and Find Full Text PDF

This review provides an overview of the main vegetable oils of different botanical origin and composition that can be used for frying worldwide (olive and extra-virgin olive oil, high-oleic sunflower oil, rapeseed oil, peanut oil, rice bran oil, sunflower oil, corn oil, soybean oil, cottonseed oil, palm oil, palm kernel oil and coconut oil) and their degradation during this process. It is well known that during this culinary technique, oil's major and minor components degrade throughout different reactions, mainly thermoxidation, polymerization and, to a lesser extent, hydrolysis. If severe high temperatures are employed, isomerization to fatty acyl chains and cyclization are also possible.

View Article and Find Full Text PDF

The fast and accurate quantitative detection of camellia oil products is significant for multiple reasons. In this study, rice bran oil and corn oil, whose Raman spectra both hold great similarities with camellia oil, are blended with camellia oil, and the concentration of each composition is predicted by models with varying feature extraction methods and regression algorithms. Back propagation neural network (BPNN), which has been rarely investigated in previous work, is used to construct regression models, the performances of which are compared with models using random forest (RF) and partial least squares regression (PLSR).

View Article and Find Full Text PDF

The potential applications of Bunge seed oil in the food and medical industries are constrained by its susceptible fatty acid composition, which is prone to oxidation. In this study, rice bran protein (RBP) was employed as an emulsifier for the fabrication of Bunge seed oil Pickering emulsion. The impact of antioxidant-phytic acid (PA) on the stability of Pickering emulsion and the underlying mechanisms were further investigated.

View Article and Find Full Text PDF

The present study evaluated the potential of Ashoka, Saraca asoca leaf meal (SLM), in carp diets following fermentative processing with a tannase-producing fish gut bacterium, Bacillus subtilis (KP765736). The processing of SLM led to a significant (P < 0.05) reduction in major anti-nutrients (tannin, trypsin inhibitor, and crude fiber), while crude protein content increased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!