Loss-of-function mutations in the PINK1 gene lead to recessive forms of Parkinson's disease. Animal models with depleted PINK1 expression have failed to reproduce significant nigral dopaminergic neurodegeneration and clear alpha-synuclein pathology, main characteristics of the disease. In this study, we investigated whether alpha-synuclein pathology is altered in the absence of PINK1 in cell culture and in vivo. We observed that downregulation of PINK1 enhanced alpha-synuclein aggregation and apoptosis in a neuronal cell culture model for synucleinopathy. Silencing of PINK1 expression in mouse substantia nigra using recombinant adeno-associated viral vectors did not induce dopaminergic neurodegeneration in a long-term study up to 10 months, nor did it enhance or accelerate dopaminergic neurodegeneration after alpha-synuclein overexpression. However, in PINK1 knockout mice, overexpression of alpha-synuclein in the substantia nigra resulted in enhanced dopaminergic neurodegeneration as well as significantly higher levels of alpha-synuclein phosphorylation at serine 129 at 4 weeks postinjection. In conclusion, our results demonstrate that total loss of PINK1 leads to an increased sensitivity to alpha-synuclein-induced neuropathology and cell death in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurobiolaging.2014.04.032 | DOI Listing |
Int J Mol Sci
December 2024
IRCSS Santa Lucia Foundation, European Center for Brain Research, 00143 Rome, Italy.
The fibronectin domain-containing protein 5 (FNDC5), or irisin, is an adipo-myokine hormone produced during exercise, which shows therapeutic potential for conditions like metabolic disorders, osteoporosis, sarcopenia, obesity, type 2 diabetes, and neurodegenerative diseases, including Alzheimer's disease (AD). This review explores its potential across various pathophysiological processes that are often considered independent. Elevated in healthy states but reduced in diseases, irisin improves muscle-adipose communication, insulin sensitivity, and metabolic balance by enhancing mitochondrial function and reducing oxidative stress.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain.
A shared hallmark of age-related neurodegenerative diseases is the chronic activation of innate immune cells, which actively contributes to the neurodegenerative process. In Alzheimer's disease, this inflammatory milieu exacerbates both amyloid and tau pathology. A similar abnormal inflammatory response has been reported in Parkinson's disease, with elevated levels of cytokines and other inflammatory intermediates derived from activated glial cells, which promote the progressive loss of nigral dopaminergic neurons.
View Article and Find Full Text PDFFront Neurosci
December 2024
The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada.
This study aimed to evaluate different combinations of three dietary supplements for potential additive or synergistic effects in an Parkinson's Disease model. The complex and diverse processes leading to neurodegeneration in each patient with a neurodegenerative disorder cannot be effectively addressed by a single medication. Instead, various combinations of potentially neuroprotective agents targeting different disease mechanisms simultaneously may show improved additive or synergistic efficacy in slowing the disease progression and allowing the agents to be utilized at lower doses to minimize side effects.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Neurodegenerative Diseases Laboratory, Center for Biomedicine, Universidad Mayor, Avenida Alemania 0281, 4780000, Temuco, La Araucanía, Chile.
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by tremor, rigidity, and bradykinesia, beginning with early loss of dopaminergic neurons in the ventrolateral substantia nigra and advancing to broader neurodegeneration in the midbrain. The clinical heterogeneity of PD and the lack of specific diagnostic tests present significant challenges, highlighting the need for reliable biomarkers for early diagnosis. Alpha-synuclein (α-Syn), a protein aggregating into Lewy bodies and neurites in PD patients, has emerged as a key biomarker due to its central role in PD pathophysiology and potential to reflect pathological processes.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
Aims: This study aims explore the impact of catechol, dopamine, and L-DOPA on the stability and toxicity of β-amyloid peptides, which play a key role in the neurodegenerative process of Alzheimer's disease, to assess their potential as therapeutic agents.
Background: Alzheimer's disease is marked by the aggregation of β-amyloid peptides, which contribute to neurodegeneration. Exploring how various compounds interact with β-amyloid peptides can offer valuable insights into potential therapeutic strategies.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!