Xq28 microduplications of MECP2 are a prominent cause of a severe syndromic form of intellectual disability (ID) in males. Females are usually unaffected through near to complete X-inactivation of the aberrant X chromosome (skewing). In rare cases, affected females have been described due to random X-inactivation. Here, we report on two female patients carrying de novo MECP2 microduplications on their fully active X chromosomes. Both patients present with ID and additional clinical features. Mono-allelic expression confirmed complete skewing of X-inactivation. Consequently, significantly enhanced MECP2 mRNA levels were observed. We hypothesize that the cause for the complete skewing is due to a more harmful mutation on the other X chromosome, thereby forcing the MECP2 duplication to become active. However, we could not unequivocally identify such a second mutation by array-CGH or exome sequencing. Our data underline that, like in males, increased MECP2 dosage in females can contribute to ID too, which should be taken into account in diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00439-014-1469-6 | DOI Listing |
Genome Med
December 2024
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
Background: MECP2 Duplication Syndrome, also known as X-linked intellectual developmental disorder Lubs type (MRXSL; MIM: 300260), is a neurodevelopmental disorder caused by copy number gains spanning MECP2. Despite varying genomic rearrangement structures, including duplications and triplications, and a wide range of duplication sizes, no clear correlation exists between DNA rearrangement and clinical features. We had previously demonstrated that up to 38% of MRXSL families are characterized by complex genomic rearrangements (CGRs) of intermediate complexity (2 ≤ copy number variant breakpoints < 5), yet the impact of these genomic structures on regulation of gene expression and phenotypic manifestations have not been investigated.
View Article and Find Full Text PDFPediatr Neurol
December 2024
Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama. Electronic address:
Cell Mol Life Sci
September 2024
Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, 6200, MD, The Netherlands.
Rett syndrome (RTT) is a neurodevelopmental disorder caused by de novo mutations in the MECP2 gene. Although miRNAs in extracellular vesicles (EVs) have been suggested to play an essential role in several neurological conditions, no prior study has utilized brain organoids to profile EV-derived miRNAs during normal and RTT-affected neuronal development. Here we report the spatiotemporal expression pattern of EV-derived miRNAs in region-specific forebrain organoids generated from female hiPSCs with a MeCP2:R255X mutation and the corresponding isogenic control.
View Article and Find Full Text PDFCell Death Discov
June 2024
Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
Am J Hum Genet
June 2024
Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!