Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The underlying cellular mechanism of anabolic effect recovered by inserting rest is not fully understood. In this work, we studied the role of F-actin regulated mechanosensitive channel(s) re-activation in mechanosensitivity modulation in vitro. Results showed that steady fluid shear stress (sFSS) stimulation with 30-min rest period was more potential in increasing alkalinephosphatase (ALP) activity than 10 and 0-min rest periods, and insertion of 30 min, but not 0 or 10 min, recovered the [Ca(2+)]i transient and contribution of the mechanosensitive channel(s). During the rest period, F-actin experienced polymerization (0-10 min), followed by depolymerization (10-30 min); inhibition of F-actin polymerization/depolymerization significantly increased/decreased the [Ca(2+)]i transient, as well as the contribution of the mechanosensitive channel(s) in subsequent sFSS stimulation. Our results demonstrated that the long rest period between sFSS loadings recruited [Ca(2+)]i transient via F-actin depolymerization-induced reactivation of mechanosensitive channel(s), suggesting that F-actin-regulated cellular stiffness could account for the decreased anabolic response during continuous mechanical loading in bone cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09168451.2014.895657 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!