For patients with chronic cryptogenic localisation-related epilepsy (CLRE), conventional MRI does not provide measures to discern between patients with or without cognitive complaints. We investigated, in a preliminary study, whether it is possible to detect cerebral biomarkers of cognitive impairment in patients with CLRE using sensitive quantitative MRI techniques. Neuropsychological assessment and quantitative 3.0 T MRI, comprising T2 relaxometry, diffusion tensor imaging, and spectroscopic imaging, were applied to 35 patients with CLRE and 21 healthy controls. Analysis included the left and right hippocampi, and frontal and temporal lobes. Differences between the groups and correlations with cognitive and clinical characteristics were assessed. Patients with epilepsy scored significantly worse on cognitive tasks compared to healthy controls. Significantly larger CSF fractions in the hippocampi and left temporal lobe, a longer T2 relaxation time in the left hippocampus, and a significantly higher concentration of glutamate/glutamine in the left frontal lobe were observed in patients with epilepsy. Moreover, poor memory performance was significantly correlated with larger CSF fractions in the right hippocampus and left temporal lobe in patients. In the temporal lobe, an association between subtle changes in morphology (indicative of atrophy) and memory performance was found, consistent with previous literature. These results may help to explain the alterations in brain functioning in patients with epilepsy.

Download full-text PDF

Source
http://dx.doi.org/10.1684/epd.2014.0665DOI Listing

Publication Analysis

Top Keywords

patients epilepsy
12
temporal lobe
12
cognitive impairment
8
cryptogenic localisation-related
8
localisation-related epilepsy
8
patients
8
patients clre
8
healthy controls
8
larger csf
8
csf fractions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!