In this paper, a new kind of approach undertakes for the synthesis of novel chitosan (CS) blended with ethylenediamine (ED) functionalized synthetic polymers viz., acrylonitrile/divinylbenzene/vinylbenzyl chloride (CS@AN/DVB/VBC-ED) and styrene/divinylbenzene/vinylbenzyl chloride (CS@ST/DVB/VBC-ED) for defluoridation of water. Under batch mode, various influencing parameters like shaking time, pH, competitor ions and temperature were optimized. The fluoride removal was reasonably explained using Freundlich, Langmuir and D-R isotherms. The thermodynamic parameters viz., ΔG°, ΔH° and ΔS° indicates the nature of the fluoride sorption with the sorbents. The FT-IR, XRD and SEM with EDAX analysis were used to study the fluoride adsorption of CS@AN/DVB/VBC-ED and CS@ST/DVB/VBC-ED blends. The thermal stability of both the sorbents was tested using TGA/DSC analysis. Studies were also conducted to test the potential application of the prepared polymeric blends for fluoride removal from field water collected from the nearby fluoride endemic area.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2014.07.016DOI Listing

Publication Analysis

Top Keywords

defluoridation water
8
ethylenediamine functionalized
8
functionalized synthetic
8
polymeric blends
8
fluoride removal
8
fluoride
5
water chitosan
4
chitosan assisted
4
assisted ethylenediamine
4
synthetic polymeric
4

Similar Publications

Application of lanthanum-modified silk fibroin/polyvinyl alcohol film for highly selective defluoridation in brick tea infusion.

Int J Biol Macromol

January 2025

State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, PR China. Electronic address:

To mitigate the risk associated with water-soluble fluoride in tea and to have less influence on the contents of tea infusion, a highly selective lanthanum modified silk fibroin (SF) and polyvinyl alcohol (PVA) composite film (SF/PVA-La) was prepared to remove fluoride from brick tea infusion. Notably, SF/PVA-La could remove about 48 % of the fluoride from in brick tea infusion within 30 min. Importantly, the reduction in total tea polyphenols in brick tea did not exceed 10 %, and the reduction in caffeine was only 0.

View Article and Find Full Text PDF

Adsorption of fluorine from lepidolite hydrometallurgy wastewater by aluminum modified zeolite.

Environ Geochem Health

December 2024

School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, People's Republic of China.

Fluoride contamination is a serious environmental problem in lepidolite hydrometallurgy wastewater. The treatment of fluoride-bearing wastewater is challenging because of the presence of coexisting ions including lithium (Li), rubidium (Rb), silicate (SiO), sulfate radical (SO). However, aluminum-modified zeolite (Al@zeolite) with sufficient hydroxyl groups and high adaptability has unique advantages for eliminating fluoride from lepidolite hydrometallurgy wastewater.

View Article and Find Full Text PDF

Wedge-Like Microstructure of AlO/i-TiCT Electrode with "Nano-Pumping" Effect for Boosting Ion Diffusion and Electrochemical Defluoridation.

Adv Sci (Weinh)

January 2025

Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China.

Controlled synthesis and regulation of 2D nanomaterials with sufficient active sites are promising in electrochemical fluorine capture, but simultaneously achieving rapid rates and efficient activity of intercalation materials remains challengs. Herein, an integrated strategy of micro-regulation interlayer space and in situ modification of MXenes is proposed to enhance ion storage kinetics. The wedge-like microstructure of aluminum oxide/incomplete-TiCT MXene (AlO/i-TiC T) is constructed by incomplete etching MAX and in situ derivation of A-layer element, in which the sub-nanoscale interlayer space is conducive to the small size ions intercalation, and the formation of "nanopump-like" effect boosted the ions diffusion.

View Article and Find Full Text PDF

In rural areas with high fluoride concentrations in groundwater, affordable and effective de-fluoridation technologies can significantly reduce the likelihood of being affected by fluorosis-related illnesses, such as skeletal fluorosis. This is particularly significant in areas where groundwater is the primary or sole drinking water source, such as the Rift Valley of Tanzania. Despite the availability of technologies, people's use of de-fluoridation devices still needs to be improved.

View Article and Find Full Text PDF

Novel MOF(Zr)-on-MOF(Ce) adsorbent for elimination of excess fluoride from aqueous solution.

J Hazard Mater

October 2023

Key Laboratory of Green Chemical Technology of Fujian Province University, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China; College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350001, China. Electronic address:

Herein, we used a one-pot method to fabricate a novel MOF-on-MOF adsorbent, namely MOF(Zr)-on-MOF(Ce). The adsorbent demonstrated a high maximum fluoride-ions capture capacity of 164.47 mg g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!