The two one-dimensional chain compounds [Mn(L1)(N3)]·H2O (1·H2O; H2L1 = 2,2'-((1E,1'E)-ethane-1,2-diylbis(azan-1-yl-1-ylidene))bis(phenylmethan-1-yl-1-ylidene)diphenol) and [Mn(L2)(N3)] (2; H2L2 = 2,2'-((1E,1'E)-2,2-dimethylpropane-1,3-diyl)bis(azan-1-yl-1-ylidene)-bis(phenylmethan-1-yl-1-ylidene)diphenol) bridged by single end-to-end azides were prepared via a self-assembly process. Each Mn(III) ion exhibits a characteristic Jahn-Teller elongation along the chain direction. For both compounds, antiferromagnetic interactions between Mn(III) spins within a chain are transmitted through the azide ligands, together with the apparent occurrence of spin canting at low temperatures. Remarkably, the coupling constants (J) for 1 and 2 exceed those reported for end-to-end azide-linked Mn(III) systems. A systematic magnetostructural relationship based on the torsion angle is established in terms of the torsion angle Mn-N(ax)···N(ax)-Mn (ax = axial) for the first time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic500676k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!