Transamination governs nitrogen isotope heterogeneity of amino acids in rats.

J Agric Food Chem

Lehrstuhl für Grünlandlehre, Department of Plant Science and ‡Fachgebiet für Tierernährung und Leistungsphysiologie, Technische Universität München, D-85350 Freising, Germany.

Published: August 2014

The nitrogen isotope composition (δ¹⁵N) of different amino acids carries different dietary information. We hypothesized that transamination and de novo synthesis create three groups that largely explain their dietary information. Rats were fed with ¹⁵N-labeled amino acids. The redistribution of the dietary ¹⁵N labels among the muscular amino acids was analyzed. Subsequently, the labeling was changed and the nitrogen isotope turnover was analyzed. The amino acids had a common nitrogen half-life of ∼20 d, but differed in δ¹⁵N. Nontransaminating and essential amino acids largely conserved the δ¹⁵N of the source and, hence, trace the origin in heterogeneous diets. Nonessential and nontransaminating amino acids showed a nitrogen isotope composition between their dietary composition and that of their de novo synthesis pool, likely indicating their fraction of de novo synthesis. The bulk of amino acids, which are transaminating, derived their N from a common N pool and hence their δ¹⁵N was similar.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf502295fDOI Listing

Publication Analysis

Top Keywords

amino acids
32
nitrogen isotope
16
novo synthesis
12
amino
8
acids
8
isotope composition
8
nitrogen
5
transamination governs
4
governs nitrogen
4
isotope
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!