A population׳s survival depends on its ability to adapt to constraints impinging upon it. As such, adaptation is at the heart of an increasing number of theoretical models. In this paper, we propose a bottom-up evolutionary model to explore the relationship between individual evolutionary dynamics and population-level survival. To do so, we extend a well-established model of gene network evolution by introducing a cost for reproduction. As a result population sizes fluctuate and populations can even go extinct. We find that if a population survives a small and critical number of generations, it will reach a quasi-stationary state which ensures long-term survival. In a constant environment, individual adaptation occurs in response to changes in a populations genetic composition. We show that genetic compatibility increases over generations as a by-product of selection for robustness, thus preventing extinction. We also demonstrate that the number of reproductive opportunities per individual, initial population size, and mutation rates all influence population survival. Finally, mixing different populations reveals that individual properties of gene networks co-evolve with the genetic composition of the population in order to maximize an individuals reproductive success.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2014.07.008 | DOI Listing |
Plant Genome
March 2025
Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
The plant Polygonum capitatum (P. capitatum) contains a variety of flavonoids that are distributed differently among different parts. Nevertheless, differentially expressed genes (DEGs) associated with this heterogeneous distribution have not been identified.
View Article and Find Full Text PDFBackground And Aims: Body composition parameters associated with aerobic fitness, mirrored by maximal oxygen consumption (V̇Omax), have recently gained interest as indicators of physical efficiency in facioscapulohumeral dystrophy (FSHD). Bioimpedance analysis (BIA) allows a noninvasive and repeatable estimate of body composition but is based on the use of predictive equations which, if used in cohorts with different characteristics from those for which the equation was originally formulated, could give biased results. Instead, the phase angle (PhA), a BIA raw bioelectrical parameter reflecting body fluids distribution, could provide reliable data for such analysis.
View Article and Find Full Text PDFFood Chem X
January 2025
Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
This study aimed to prepare a composite film by blending cross-linked tapioca starch (CLTS) with sodium alginate (SA), silver nanoparticles (AgNPs), and ZnO nanoparticles (ZnOs). The effects of SA, AgNPs, and ZnOs at different concentrations (1-3 wt%) on the mechanical properties, optical properties, thermal stability, and antibacterial activity of cross-linked starch films were also investigated. The structures of the films were examined by Fourier transform infrared spectroscopy and X-ray diffraction.
View Article and Find Full Text PDFFor Res (Fayettev)
December 2024
State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
Polyphenols, as one of the primary compounds produced by plant secondary metabolism, have garnered considerable attention because of their non-toxic, environmentally friendly, and biodegradable properties, as well as their notable medicinal value. This study presents a metabolomic analysis of polyphenols from 11 woody plants, including , , and , investigating a total of 40 polyphenolic metabolites. A differential metabolite dynamics map highlighted the five most differentiated substances among the 11 plants, including vitexin, dihydromyricetin, genistin, resveratrol, and isorhamnetin.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, 77843, USA.
Organelles are specialized subunits within cells which carry out vital functions crucial to cellular survival and form a tightly regulated network. Dysfunctions in any of these organelles are linked to numerous diseases impacting virtually every organ system in the human body. Targeted delivery of therapeutics to specific organelles within the cell holds great promise for overcoming challenging diseases and improving treatment outcomes through the minimization of therapeutic dosage and off-target effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!