Objectives: This study aims to evaluate whether the collagen membrane (membrane) wrapping around the methotrexate (MTX)-containing calcium-phosphate cement (CPC) reduces the side effects on soft tissue healing.

Material And Methods: In 36 rats, femoral bone defects were created and treated in six groups which were CPC only, CPC and membrane wrapping around, CPC containing 2% MTX, CPC containing 2% MTX and membrane wrapping around, CPC containing 5% MTX, CPC containing 5% MTX and membrane wrapping around.

Results: Histological examinations revealed a statistically significantly improved healing in the connective tissue samples of the CPC containing 5% MTX group wrapped around by membrane compared to those without membrane (p=0.04). However, this was not seen in other groups.

Conclusion: Membrane wrapping around the CPC containing MTX reduces the side effect of MTX on cellular proliferation at its highest concentration, particularly. Membrane wrapping may allow administration of higher doses of an anti-neoplastic drug which can be more effective.

Download full-text PDF

Source
http://dx.doi.org/10.5606/ehc.2014.21DOI Listing

Publication Analysis

Top Keywords

membrane wrapping
28
cpc mtx
24
reduces side
12
wrapping cpc
12
membrane
9
cpc
9
collagen membrane
8
calcium-phosphate cement
8
side effects
8
effects soft
8

Similar Publications

The adhesion of nanoparticles to lipid vesicles causes curvature deformations to the membrane to an extent determined by the competition between the adhesive interaction and the membrane's elasticity. These deformations can extend over length scales larger than the size of a nanoparticle, leading to an effective membrane-curvature-mediated interaction between nanoparticles. Nanoparticles with uniform surfaces tend to aggregate into unidimensionally close-packed clusters at moderate adhesion strengths and endocytose at high adhesion strengths.

View Article and Find Full Text PDF

Optimizing the Coordination Energy of Co-N Sites by Co Nanoparticles Integrated with Fe-NCNTs for Boosting PEMFC and Zn-Air Battery Performance.

Small

January 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.

Enhancing the catalytic performance and durability of M-N─C catalyst is crucial for the efficient operation of proton exchange membrane fuel cells (PEMFCs) and Zn-Air batteries (ZABs). Herein, an approach is developed for the in situ fabrication of a MOFs-derived porous carbon material, co-loaded with Co nanoparticles (NPs) and Co-N sites and integrated onto Fe-doped carbon nanotubes (CNTs), named Co-NC/Fe-NCNTs. Incorporating polymer-wrapped CNTs improves MOFs dispersion annealing at high temperature, which amplifies the three-phase boundary (TPB) by generating much more mesopores and exposing additional active sites within the catalysts layer.

View Article and Find Full Text PDF

Macrophage membrane-biomimetic ROS-responsive platinum nanozyme clusters for acute kidney injury treatment.

Biomaterials

December 2024

Department of Biotherapy and Department of Hematology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China. Electronic address:

Acute kidney injury (AKI) is a common clinical syndrome characterized by the rapid loss of renal filtration function. No standard therapeutic agent option is currently available. The development and progression of AKI is a continuous and dynamical pathological process.

View Article and Find Full Text PDF

Peripheral Myelin Protein 22 (PMP22) and MPZ are abundant myelin membrane proteins in Schwann cells. The MPZ adhesion protein holds myelin wraps together across the intraperiod line. PMP22 is a tetraspan protein belonging to the Claudin superfamily.

View Article and Find Full Text PDF

Potent prophylactic cancer vaccines harnessing surface antigens shared by tumour cells and induced pluripotent stem cells.

Nat Biomed Eng

December 2024

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, P. R. China.

The development of prophylactic cancer vaccines typically involves the selection of combinations of tumour-associated antigens, tumour-specific antigens and neoantigens. Here we show that membranes from induced pluripotent stem cells can serve as a tumour-antigen pool, and that a nanoparticle vaccine consisting of self-assembled commercial adjuvants wrapped by such membranes robustly stimulated innate immunity, evaded antigen-specific tolerance and activated B-cell and T-cell responses, which were mediated by epitopes from the abundant number of antigens shared between the membranes of tumour cells and pluripotent stem cells. In mice, the vaccine elicited systemic antitumour memory T-cell and B-cell responses as well as tumour-specific immune responses after a tumour challenge, and inhibited the progression of melanoma, colon cancer, breast cancer and post-operative lung metastases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!