The smart aerial release machine, a universal system for applying the sterile insect technique.

PLoS One

Institut Sénégalais de Recherches Agricoles, Laboratoire National d'Elevage et de Recherches Vétérinaires, Dakar - Hann, Sénégal; Unité Mixte de Recherche Contrôle des Maladies Animales Exotiques et Emergentes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France; Unité Mixte de Recherche 1309 Contrôle des Maladies Animales Exotiques et Emergentes, Institut national de la recherche agronomique (INRA), Montpellier, France.

Published: November 2015

Background: Beyond insecticides, alternative methods to control insect pests for agriculture and vectors of diseases are needed. Management strategies involving the mass-release of living control agents have been developed, including genetic control with sterile insects and biological control with parasitoids, for which aerial release of insects is often required. Aerial release in genetic control programmes often involves the use of chilled sterile insects, which can improve dispersal, survival and competitiveness of sterile males. Currently available means of aerially releasing chilled fruit flies are however insufficiently precise to ensure homogeneous distribution at low release rates and no device is available for tsetse.

Methodology/principal Findings: Here we present the smart aerial release machine, a new design by the Mubarqui Company, based on the use of vibrating conveyors. The machine is controlled through Bluetooth by a tablet with Android Operating System including a completely automatic guidance and navigation system (MaxNav software). The tablet is also connected to an online relational database facilitating the preparation of flight schedules and automatic storage of flight reports. The new machine was compared with a conveyor release machine in Mexico using two fruit flies species (Anastrepha ludens and Ceratitis capitata) and we obtained better dispersal homogeneity (% of positive traps, p<0.001) for both species and better recapture rates for Anastrepha ludens (p<0.001), especially at low release densities (<1500 per ha). We also demonstrated that the machine can replace paper boxes for aerial release of tsetse in Senegal.

Conclusions/significance: This technology limits damages to insects and allows a large range of release rates from 10 flies/km2 for tsetse flies up to 600,000 flies/km2 for fruit flies. The potential of this machine to release other species like mosquitoes is discussed. Plans and operating of the machine are provided to allow its use worldwide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103892PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103077PLOS

Publication Analysis

Top Keywords

aerial release
16
release machine
12
smart aerial
8
genetic control
8
sterile insects
8
fruit flies
8
release
6
machine
5
control
5
machine universal
4

Similar Publications

Effectiveness of artificially planted mangroves on remediation of metals released from ship-breaking activities.

Mar Pollut Bull

January 2025

Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; School of Engineering and Built Environment, Griffith University, Brisbane, QLD, Australia; East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu Darul Iman, Malaysia. Electronic address:

The pervasive and escalating issue of toxic metal pollution has gathered global attention, necessitating the exploration of innovative ecological strategies like phytoremediation. This study explored the extent of potentially toxic metal contamination status and the effectiveness of three planted mangrove species (Avicennia marina, Bruguiera gymnorhiza,and Excoecaria agallocha) in phytoremediation efforts to reduce pollution level. The results indicated that the mean concentrations of elements in the sediment of the area followed a descending sequence: Fe (27,136.

View Article and Find Full Text PDF

Enhancement of the production of terpenoid and flavonoid secondary metabolites in the ground and aerial parts of licorice composite plant in a hydroponic system.

J Biotechnol

January 2025

Biotechnology Research Department, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), National Botanical Garden, Tehran Karaj Freeway, P.O. Box 13185-116, Tehran, Iran.

Hairy roots mediated by Agrobacterium rhizogenes can be obtained from the composite plants (plants with hairy roots and untransformed aerial parts) by ex vitro method. Composite plants can produce higher amounts of secondary metabolites by merging hydroponic systems. This provides a stable condition for composite plants, in which various metabolites are produced in different parts.

View Article and Find Full Text PDF

Previously, it was found that four types of glandular trichomes (GTs) are developed on the surface of all aerial organs in Doronicum species. A detailed study of leaves had shown that only two types of GTs form in them. Nothing was known about any differences of GTs on vegetative and reproductive organs.

View Article and Find Full Text PDF

Recent developments on aerial lab-on-a-drone platforms for remote environmental monitoring: A review.

Anal Chim Acta

February 2025

Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, 13084-971, SP, Brazil. Electronic address:

Background: Distinct classes of environmental contaminants - such as microplastics, volatile organic compounds, inorganic gases, hormones, pesticides/herbicides, and heavy metals - have been continuously released into the environment from different sources. Anthropogenic activities with unprecedented consequences have impacted soil, surface waters, and the atmosphere. In this scenario, developing sensing materials and analytical platforms for monitoring water and air quality is essential to supporting worldwide environmental control agencies.

View Article and Find Full Text PDF

The use of animal-borne devices (= biologgers) has revolutionized the study of marine megafauna, yet there remains a paucity of data concerning the behavioral and physiological impacts of biologger attachment and retention. Here, we used animal-borne cameras to characterize the behavior and dive duration of juvenile green turtles () in The Bahamas for up to 210 min after biologger deployment ( = 58). For a "control," we used unoccupied aerial vehicles (UAVs) to collect comparable data from nonhandled green turtles ( = 25) in the same habitats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!