7-Ketocholesterol-induced inflammation signals mostly through the TLR4 receptor both in vitro and in vivo.

PLoS One

Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America.

Published: March 2015

The cholesterol oxide 7-ketocholesterol (7KCh) has been implicated in numerous age-related diseases such as atherosclerosis, Alzheimer's disease, Parkinson's disease, cancer and age-related macular degeneration. It is formed by the autooxidation of cholesterol and especially cholesterol-fatty acid esters found in lipoprotein deposits. This molecule causes complex and potent inflammatory responses in vitro and in vivo. It is suspected of causing chronic inflammation in tissues exposed to oxidized lipoprotein deposits. In this study we have examined the inflammatory pathways activated by 7KCh both in cultured ARPE19 cells and in vivo using 7KCh-containing implants inserted into the anterior chamber of the rat eye. Our results indicate that 7KCh-induced inflammation is mediated mostly though the TLR4 receptor with some cross-activation of EGFR-related pathways. The majority of the cytokine inductions seem to signal via the TRIF/TRAM side of the TLR4 receptor. The MyD88/TIRAP side only significantly effects IL-1β inductions. The 7KCh-induced inflammation also seems to involve a robust ER stress response. However, this response does not seem to involve a calcium efflux-mediated UPR. Instead the ER stress response seems to be mediated by yet identified kinases activated through the TLR4 receptor. Some of the kinases identified are the RSKs which seem to mediate the cytokine inductions and the cell death pathway but do not seem to be involved in the ER stress response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103802PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100985PLOS

Publication Analysis

Top Keywords

tlr4 receptor
16
stress response
12
vitro vivo
8
lipoprotein deposits
8
7kch-induced inflammation
8
cytokine inductions
8
7-ketocholesterol-induced inflammation
4
inflammation signals
4
tlr4
4
signals tlr4
4

Similar Publications

Mechanisms Underlying the Size-Dependent Neurotoxicity of Polystyrene Nanoplastics in Zebrafish.

Environ Sci Technol

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China.

Nanoplastics (NPs) are ubiquitous in the environment, posing significant threats to biological systems, including nervous systems, across various trophic levels. Nevertheless, the molecular mechanisms behind the size-dependent neurotoxicity of NPs remain unclear. Here, we investigated the neurotoxicity of 20 and 100 nm polystyrene NPs (PS-NPs) to zebrafish.

View Article and Find Full Text PDF

Personalized Nanovaccine Based on STING-Activating Nanocarrier for Robust Cancer Immunotherapy.

ACS Nano

January 2025

Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.

Tumor-specific T cells play a vital role in potent antitumor immunity. However, their efficacy is severely affected by the spatiotemporal orchestration of antigen-presentation as well as the innate immune response in dendritic cells (DCs). Herein, we develop a minimalist nanovaccine that exploits a dual immunofunctional polymeric nanoplatform (DIPNP) to encapsulate ovalbumin (OVA) via electrostatic interaction when the nanocarrier serves as both STING agonist and immune adjuvant in DCs.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) are crucial components of innate immunity. A specific form of genetic variation in TLR genes may increase the chance of developing leukemia. The present investigation conducted a comprehensive meta-analysis to examine the correlation between three TLR polymorphisms, namely TLR2 (rs3804099), TLR4 (rs4986790), and TLR9 (rs187084), within the leukemia risk group.

View Article and Find Full Text PDF

Physiological accumulation of lipid droplets in newborn liver during breastfeeding is driven by TLR4 ligands.

J Lipid Res

January 2025

Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. Electronic address:

Background: The liver plays a central role in fat storage, but little is known about physiological fat accumulation during early development. Here we investigated a transient surge in hepatic lipid droplets observed in newborn mice immediately after birth.

Methods: We developed a novel model to quantify liver fat content without tissue processing.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to explore the therapeutic potential of the novel combination of Bacillus bacteriophage lysin (PlyB) and a synthetic TLR2/4 inhibitor (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, OxPAPC) in the treatment of experimental Bacillus cereus endophthalmitis.

Methods: C57BL/6J mice were injected with 100 colony forming units (CFUs) Bacillus cereus to induce endophthalmitis. Two hours postinfection, groups of mice were treated with either PlyB, PlyB with OxPAPC, or the groups were left untreated to serve as a control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!