The allohexaploid bread wheat genome consists of three closely related subgenomes (A, B, and D), but a clear understanding of their phylogenetic history has been lacking. We used genome assemblies of bread wheat and five diploid relatives to analyze genome-wide samples of gene trees, as well as to estimate evolutionary relatedness and divergence times. We show that the A and B genomes diverged from a common ancestor ~7 million years ago and that these genomes gave rise to the D genome through homoploid hybrid speciation 1 to 2 million years later. Our findings imply that the present-day bread wheat genome is a product of multiple rounds of hybrid speciation (homoploid and polyploid) and lay the foundation for a new framework for understanding the wheat genome as a multilevel phylogenetic mosaic.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1250092DOI Listing

Publication Analysis

Top Keywords

bread wheat
16
wheat genome
12
hybrid speciation
8
wheat
5
genome
5
ancient hybridizations
4
hybridizations ancestral
4
ancestral genomes
4
bread
4
genomes bread
4

Similar Publications

This study investigated the effects of different formulations on the technological and sensory properties of bread. The bread formulation included 9 variations of sourdough treatments and 4 variations of wheat flour and oat flour percentages. Results demonstrated that the highest increase in dough volume occurred in samples containing sourdough made from wheat, oat, , and at 64.

View Article and Find Full Text PDF

There is growing interest in low-temperature food processing. In the baking industry, low-temperature fermentation improves the production of natural aroma compounds, which have a positive impact on the sensory profile of the final product. The aim of this study was to develop a yeast-lactic acid bacteria starter culture that effectively ferments wheat dough at a temperature of 15 °C.

View Article and Find Full Text PDF

Digestion of gluten-derived immunogenic peptides along the gastrointestinal tract of the growing pig as a model for the adult human is enhanced with simultaneous consumption of exogenous proteases.

J Nutr

January 2025

Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4474, New Zealand; Smart Foods and Bioproducts, AgResearch Limited, Te Ohu Rangahau Kai Facility, Palmerston North 4474, New Zealand. Electronic address:

Background And Aims: Digestion of gluten-derived immunogenic peptides along the gastrointestinal tract (GIT) is not well established. This study aimed to map the digestion of gluten-derived immunogenic peptides along the GIT using the growing pig as a human adult model, and actinidin as a model exogenous protease.

Methods: Entire male pigs 9 weeks of age (n=54, 19.

View Article and Find Full Text PDF

Impact of structural variations and genome partitioning on bread wheat hybrid performance.

Funct Integr Genomics

January 2025

INRAE, Genetics, Diversity and Ecophysiology of Cereals, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.

The agronomical interest of hybrid wheat has long been a matter of debate. Compared to maize where hybrids have been successfully grown for decades, the mixed results obtained in wheat have been attributed at least partially to the lack of heterotic groups. The wheat genome is known to be strongly partitioned and characterized by numerous presence/absence variations and alien introgressions which have not been thoroughly considered in hybrid breeding.

View Article and Find Full Text PDF

Wheat (Triticum aestivum L.) is one of the most important cereal crops, with its grain serving as a predominant staple food source on a global scale. However, there are many biotic and abiotic stresses challenging the stability of wheat production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!