Purpose/objective(s): Primary low-grade gliomas are common brain tumors of childhood, many of which require radiation therapy (RT) as definitive treatment. Increased conformality of RT could decrease the incidence and severity of late effects. We report our experience with 32 pediatric patients treated with proton RT.
Methods And Materials: Thirty-two pediatric patients with low-grade gliomas of the brain or spinal cord were treated with proton RT from 1995 to 2007. Sixteen patients received at least 1 regimen of chemotherapy before definitive RT. The median radiation dose was 52.2 GyRBE (48.6-54 GyRBE).
Results: The median age at treatment was 11.0 years (range, 2.7-21.5 years), with a median follow-up time of 7.6 years (range, 3.2-18.2 years). The 6-year and 8-year rates of progression-free survival were 89.7% and 82.8%, respectively, with an 8-year overall survival of 100%. For the subset of patients who received serial neurocognitive testing, there were no significant declines in Full-Scale Intelligence Quotient (P=.80), with a median neurocognitive testing interval of 4.5 years (range, 1.2-8.1 years) from baseline to follow-up, but subgroup analysis indicated some significant decline in neurocognitive outcomes for young children (<7 years) and those with significant dose to the left temporal lobe/hippocampus. The incidence of endocrinopathy correlated with a mean dose of ≥40 GyRBE to the hypothalamus, pituitary, or optic chiasm. Stabilization or improvement of visual acuity was achieved in 83.3% of patients at risk for radiation-induced injury to the optic pathways.
Conclusions: This report of late effects in children with low-grade gliomas after proton RT is encouraging. Proton RT appears to be associated with good clinical outcome, especially when the tumor location allows for increased sparing of the left temporal lobe, hippocampus, and hypothalamic-pituitary axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2014.04.053 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.
View Article and Find Full Text PDFCir Cir
January 2025
Department of Neurosurgery, Spinal Health Center, Memorial Hospital, Istanbul, Turkey.
Objective: We aimed to elucidate the histopathological pre-diagnosis of cranial gliomas with magnetic resonance imaging (MRI) techniques in gliomas.
Method: A total of 82 glioma patients were enrolled to our study. Pre-operative conventional MRI images (non-contrast T1/T2/flair/contrast-enhanced T1) and advanced MRI images (DAG and ADC mapping, MRI spectroscopy and perfusion MRI [PMRI]) were analyzed.
Future Oncol
January 2025
Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA.
Seizures are a frequent complication in glioma. Incidence of brain tumor-related epilepsy (BTRE) in high-grade glioma (HGG) is an estimated > 25% and in low-grade glioma (LGG) is approximately 72%. Two first-line antiseizure medications (ASMs) for BTRE include levetiracetam (LEV) and valproic acid (VPA).
View Article and Find Full Text PDFCurr Neurol Neurosci Rep
January 2025
Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, Montpellier, 34295, France.
Purpose Of Review: In low-grade glioma (LGG), besides the patient's neurological status and tumor characteristics on neuroimaging, current treatment guidelines mainly rely on the glioma's genetics at diagnosis to define therapeutic strategy, usually starting with surgical resection. However, this snapshot in time does not take into account the antecedent period of tumor progression and its interactions with the brain before presentation. This article reviews new concepts that pertain to reconstruct the history of previous interplay between the LGG's course and adaptive changes in the connectome within which the glioma is embedded over the years preceding the diagnosis.
View Article and Find Full Text PDFCancer Res
December 2024
Lunenfeld-Tanenbaum Research Institute, Toronto, Canada.
IDH-mutant low-grade gliomas (LGGs) are slow-growing brain tumors that frequently progress to aggressive high-grade gliomas that have dismal outcomes. In a recent study, Wu and colleagues provide critical insights into the mechanisms underlying malignant progression by analyzing single-cell gene expression and chromatin accessibility across different tumor grades. Their findings support a two-phase model: in early stages, tumors are primarily driven by oligodendrocyte precursor-like cells and epigenetic alterations that silence tumor suppressors like CDKN2A and activate oncogenes such as PDGFRA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!