Purpose: To test the hypothesis that a genomic classifier (GC) would predict biochemical failure (BF) and distant metastasis (DM) in men receiving radiation therapy (RT) after radical prostatectomy (RP).
Methods And Materials: Among patients who underwent post-RP RT, 139 were identified for pT3 or positive margin, who did not receive neoadjuvant hormones and had paraffin-embedded specimens. Ribonucleic acid was extracted from the highest Gleason grade focus and applied to a high-density-oligonucleotide microarray. Receiver operating characteristic, calibration, cumulative incidence, and Cox regression analyses were performed to assess GC performance for predicting BF and DM after post-RP RT in comparison with clinical nomograms.
Results: The area under the receiver operating characteristic curve of the Stephenson model was 0.70 for both BF and DM, with addition of GC significantly improving area under the receiver operating characteristic curve to 0.78 and 0.80, respectively. Stratified by GC risk groups, 8-year cumulative incidence was 21%, 48%, and 81% for BF (P<.0001) and for DM was 0, 12%, and 17% (P=.032) for low, intermediate, and high GC, respectively. In multivariable analysis, patients with high GC had a hazard ratio of 8.1 and 14.3 for BF and DM. In patients with intermediate or high GC, those irradiated with undetectable prostate-specific antigen (PSA ≤0.2 ng/mL) had median BF survival of >8 years, compared with <4 years for patients with detectable PSA (>0.2 ng/mL) before initiation of RT. At 8 years, the DM cumulative incidence for patients with high GC and RT with undetectable PSA was 3%, compared with 23% with detectable PSA (P=.03). No outcome differences were observed for low GC between the treatment groups.
Conclusion: The GC predicted BF and metastasis after post-RP irradiation. Patients with lower GC risk may benefit from delayed RT, as opposed to those with higher GC; however, this needs prospective validation. Genomic-based models may be useful for improved decision-making for treatment of high-risk prostate cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432840 | PMC |
http://dx.doi.org/10.1016/j.ijrobp.2014.04.052 | DOI Listing |
Patient Saf Surg
January 2025
Department of Surgery, University of Virginia, Charlottesville, Virginia, USA.
Background: While existing risk calculators focus on mortality and complications, elderly patients are concerned with how operations will affect their quality of life, especially their independence. We sought to develop a novel clinically relevant and easy-to-use score to predict elderly patients' loss of independence after gastrointestinal surgery.
Methods: This retrospective cohort study included patients age ≥ 65 years enrolled in the American College of Surgeons National Surgical Quality Improvement Program database and Geriatric Pilot Project who underwent pancreatic, colorectal, or hepatic surgery (January 1, 2014- December 31, 2018).
Radiat Oncol
January 2025
Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, P.R. China.
Aim: To characterize the differences of dynamic changes for absolute lymphocyte count (ALC) among esophageal squamous cell carcinoma (ESCC) patients treated with neoadjuvant chemoradiotherapy (nCRT) with or without pembrolizumab, as well as to investigate the clinical and lymphocyte-related organs dosimetric parameters that would impact ALC nadir during nCRT.
Materials And Methods: A total of 216 ESCC patients who received nCRT (with pembrolizumab 144; without pembrolizumab: 72) were identified from a prospective cohort. Weekly and 1-month post-nCRT ALC were identified.
BMC Cancer
January 2025
Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
Objectives: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).
Methods: DWI and clinical data from 155 EC patients were included in this study, consisting of 80 in the training set, 35 in the test set, and 40 in the external validation set. Radiomics features, convolutional neural network-based DL features, and clinical variables were analyzed.
BMC Cancer
January 2025
Department of Radiology, Xiangtan Central Hospital, Xiangtan, 411000, P. R. China.
Background: This study aims to quantify intratumoral heterogeneity (ITH) using preoperative CT image and evaluate its ability to predict pathological high-grade patterns, specifically micropapillary and/or solid components (MP/S), in patients diagnosed with clinical stage I solid lung adenocarcinoma (LADC).
Methods: In this retrospective study, we enrolled 457 patients who were postoperatively diagnosed with clinical stage I solid LADC from two medical centers, assigning them to either a training set (n = 304) or a test set (n = 153). Sub-regions within the tumor were identified using the K-means method.
BMC Cancer
January 2025
Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, 530021, China.
Background And Objective: In clinical practice, CK19 can be an important predictor for the prognosis of HCC. Due to the high incidence and mortality rates of HCC, more effective and practical prognostic prediction models need to be developed urgently.
Methods: A total of 1,168 HCC patients, who underwent radical surgery at the Guangxi Medical University Cancer Hospital, between January 2014 and July 2019, were recruited, and their clinicopathological data were collected.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!