Identification of collaborative driver pathways in breast cancer.

BMC Genomics

Bioinformatics Graduate Program and Department of Biomedical Engineering, Boston University, 24 Cummington Mall, Boston, MA 02215, USA.

Published: July 2014

Background: An important challenge in cancer biology is to computationally screen mutations in cancer cells, separating those that might drive cancer initiation and progression, from the much larger number of bystanders. Since mutations are large in number and diverse in type, the frequency of any particular mutation pattern across a set of samples is low. This makes statistical distinctions and reproducibility across different populations difficult to establish.

Results: In this paper we develop a novel method that promises to partially ameliorate these problems. The basic idea is although mutations are highly heterogeneous and vary from one sample to another, the processes that are disrupted when cells undergo transformation tend to be invariant across a population for a particular cancer or cancer subtype. Specifically, we focus on finding mutated pathway-groups that are invariant across samples of breast cancer subtypes. The identification of informative pathway-groups consists of two steps. The first is identification of pathways significantly enriched in genes containing non-synonymous mutations; the second uses pathways so identified to find groups that are functionally related in the largest number of samples. An application to 4 subtypes of breast cancer identified pathway-groups that can highly explicate a particular subtype and rich in processes associated with transformation.

Conclusions: In contrast to previous methods that identify pathways across a set of samples without any further validation, we show that mutated pathway-groups can be found in each breast cancer subtype and that such groups are invariant across the majority of samples. The algorithm is available at http://www.visantnet.org/misi/MUDPAC.zip.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111852PMC
http://dx.doi.org/10.1186/1471-2164-15-605DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
cancer
9
set samples
8
cancer subtype
8
mutated pathway-groups
8
samples
5
identification collaborative
4
collaborative driver
4
pathways
4
driver pathways
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!