The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high-quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogen-vacancy centre spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen-vacancy spin-strain interaction has not been well characterized. Here, we demonstrate dynamic, strain-mediated coupling of the mechanical motion of a diamond cantilever to the spin of an embedded nitrogen-vacancy centre. Via quantum control of the spin, we quantitatively characterize the axial and transverse strain sensitivities of the nitrogen-vacancy ground-state spin. The nitrogen-vacancy centre is an atomic scale sensor and we demonstrate spin-based strain imaging with a strain sensitivity of 3 × 10(-6) strain Hz(-1/2). Finally, we show how this spin-resonator system could enable coherent spin-phonon interactions in the quantum regime.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109012PMC
http://dx.doi.org/10.1038/ncomms5429DOI Listing

Publication Analysis

Top Keywords

nitrogen-vacancy centre
12
dynamic strain-mediated
8
strain-mediated coupling
8
mechanical resonator
8
quantum
5
nitrogen-vacancy
5
strain
5
coupling single
4
single diamond
4
spin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!