Purpose: To explore the potential of magnetofection in delivering pDNA to primary mouse embryonic fibroblasts (PMEFs) and porcine fetal fibroblasts (PFFs) and investigate an effect of magnetic cell labeling on transfection efficacy.

Methods: The formulation and a dose of the magnetic vector were optimized. The efficacy of the procedure was quantified by vector internalization, transgene expression and cell iron loading upon specific labeling with Ab-conjugated magnetic beads or non-specific labeling with MNPs.

Results: Up to sixty percent of PMEF and PFF cells were transfected at low pDNA doses of 4-16 pg pDNA/cell. Specific labeling of the PMEFs with MNPs, resulted in a 3- and 2-fold increase in pDNA internalization upon magnetofection and lipofection, respectively, that yielded a 2-4-fold increase in percent of transgene-expressing cells. Non-specific cell labeling had no effect on the efficacy of the reporter expression, despite the acquisition of similar magnetic moments per cell. In PFFs, specific magnetic labeling of the cell surface receptors inhibited internalization and transfection efficacy.

Conclusions: Magnetic labeling of cell-surface receptors combined with the application of an inhomogenous magnetic field (nanomagnetic activation) can affect the receptor-mediated internalization of delivery vectors and be used to control nucleic acid delivery to cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-014-1448-6DOI Listing

Publication Analysis

Top Keywords

nanomagnetic activation
8
nucleic acid
8
acid delivery
8
cell labeling
8
specific labeling
8
magnetic labeling
8
magnetic
7
labeling
7
cell
5
activation control
4

Similar Publications

Ternary stochastic neuron - implemented with a single strained magnetostrictive nanomagnet.

Nanotechnology

January 2025

Department of Electrical and Computer Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, USA, Richmond, 23284, UNITED STATES.

Stochastic neurons are extremely efficient hardware for solving a large class of problems and usually come in two varieties - "binary" where the neuronal state varies randomly between two values of ±1 and "analog" where the neuronal state can randomly assume any value between -1 and +1. Both have their uses in neuromorphic computing and both can be implemented with low- or zero-energy-barrier nanomagnets whose random magnetization orientations in the presence of thermal noise encode the binary or analog state variables. In between these two classes is n-ary stochastic neurons, mainly ternary stochastic neurons (TSN) whose state randomly assumes one of three values (-1, 0, +1), which have proved to be efficient in pattern classification tasks such as recognizing handwritten digits from the MNIST data set or patterns from the CIFAR-10 data set.

View Article and Find Full Text PDF

Theory and simulations are used to demonstrate implementation of a variational Bayes algorithm called "active inference" in interacting arrays of nanomagnetic elements. The algorithm requires stochastic elements, and a simplified model based on a magnetic artificial spin ice geometry is used to illustrate how nanomagnets can generate the required random dynamics. Examples of tracking and PID control are demonstrated and shown to be consistent with the original stochastic differential equation formulation of active inference.

View Article and Find Full Text PDF

Polymer-based catalysts have garnered significant interest for their efficiency, reusability, and compatibility with various synthesis processes. In catalytic applications, polymers offer the advantage of structural versatility, enabling functional groups to be tailored for specific catalytic activities. In this study, we developed a novel magnetic copolymer of methyl methacrylate and maleic anhydride (PMMAn), synthesized via in situ chemical polymerization of methyl methacrylate onto maleic anhydride, using benzoyl peroxide as a free-radical initiator.

View Article and Find Full Text PDF

A novel screening platform based on an FeO@C@PDA-Ni@COX-2 ligand fishing combination with high-performance liquid chromatography-mass spectrometry was first designed, synthesized, and employed to screen and identify COX-2 inhibitors from leaves. The obtained magnetic nanoparticles exhibit outstanding preconcentration ability that allows for controlling the enzyme orientation to avoid enzyme active site blocking, conformational changes, or denaturing during immobilization. The as-prepared FeO@C@PDA-Ni@COX-2 composite was carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectrometry (FT-IR), Xray powder diffraction (XRD), thermal gravimetric analyzer (TGA), vibrating sample magnetometer (VSM), and Zeta potential analysis.

View Article and Find Full Text PDF

Nanomagnetic forces deliver precise mechanical cues to biological systems through the remote pulling of magnetic nanoparticles under a permanent magnetic field. Cortical neurons respond to nanomagnetic forces with cytosolic calcium influx and event rate shifts. However, the underlying consequences of nanomagnetic force modulation on cortical neurons remain to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!