Using the fluorescent probe Fluo-4 AM the authors have identified Na(+)-independent Ca2+H(+)-exchange in isolated mitochondria of rat myometrium and studied its individual properties. Formation of directional protons gradient in the matrix of mitochondria causes antyporte release of Ca2+, which has been previously accumulated in energetic processes (in the presence of Mg-ATP and succinate). The functioning of Ca2+/H(+)-exchange depends on the proton gradient and is characterized by reversibility, in case of extramitochondria environment alkalization the additional accumulation of Ca2+ by organelles is recorded. Monovalent cations gradients (Na+, K+, Li+) do not cause the release of Ca2+ from mitochondria. Rate of Ca2+/H(+)-exchange is growing in terms of increasing deltapH on the mitochondria membrane and kinetics of deltapH-induced Ca2+ release from the matrix corresponds to the laws of first order reaction. Research of Ca2+/H(+)-exchange some properties in the myometrium mitochondria showed that the above transport process is of electrogenic nature, perhaps it is done in a 1: 1 stechiometry (Hill coefficient on H+ close to 1) and is able to adjust matrix Ca2+ concentration under physiological conditions (pH activation of about 6.9). Thus, in the inner membrane of the myometrium mitochondria the available system of the secondary active Ca(2+)-transport from the matrix of these organelles to myoplasm and the functioning of Ca2+/H(+)-exchanger may underlie this process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.15407/ubj86.03.041 | DOI Listing |
Pharmaceuticals (Basel)
November 2024
Relmada Therapeutics, Inc., Coral Gables, FL 33134, USA.
Uncompetitive NMDAR (N-methyl-D-aspartate receptor) antagonists restore impaired neural plasticity, reverse depressive-like behavior in animal models, and relieve major depressive disorder (MDD) in humans. This review integrates recent findings from in silico, in vitro, in vivo, and human studies of uncompetitive NMDAR antagonists into the extensive body of knowledge on NMDARs and neural plasticity. Uncompetitive NMDAR antagonists are activity-dependent channel blockers that preferentially target hyperactive GluN2D subtypes because these subtypes are most sensitive to activation by low concentrations of extracellular glutamate and are more likely activated by certain pathological agonists and allosteric modulators.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Research Institute of Highway Ministry of Transport, Beijing 100088, China.
This study investigated the potential for efficient and resourceful utilization of phosphogypsum (PG) through the preparation of a High-volume Phosphogypsum Cement Stabilized Road Base (HPG-CSSB). The investigation analyzed the unconfined compressive strength (UCS), water stability, strength formation mechanism, microstructure, and pollutant curing mechanism of HPG-CSSB by laser diffraction methods (LD), X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and inductively coupled plasma-mass spectrometry (ICP-MS). The optimal mix ratio of HPG-CSSB was 4% cement, 1% CA2, 35% PG, and 60% graded crushed stone.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Dentistry, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil.
This in vitro study evaluated the effects of brushing with activated charcoal powder or toothpaste on enamel surface properties, including color change (ΔE), Knoop microhardness (HK), roughness (Ra), and the characteristics of the resulting brushing slurry [pH, fluoride (F), and calcium (Ca) concentration]. A total of 48 enamel samples were stained and divided into 4 groups ( = 12): activated charcoal toothpaste (AC-T), activated charcoal powder (AC-P), hydrogen peroxide-based whitening toothpaste (HP-T), and conventional toothpaste (C-T, positive control). The samples were subjected to a brushing cycling model, and ΔE, HK, Ra and enamel morphology were analyzed at baseline (T0) and after brushing cycle (T1).
View Article and Find Full Text PDFCells
December 2024
Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
Injured or atrophied adult skeletal muscles are regenerated through terminal differentiation of satellite cells to form multinucleated muscle fibers. Transplantation of satellite cells or cultured myoblasts has been used to improve skeletal muscle regeneration. Some of the limitations observed result from the limited number of available satellite cells that can be harvested and the efficiency of fusion of cultured myoblasts with mature muscle fibers (i.
View Article and Find Full Text PDFCells
December 2024
Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, USA.
Over 200 point mutations in the ryanodine receptor (RyR2) of the cardiac sarcoplasmic reticulum (SR) are known to be associated with cardiac arrhythmia. We have already reported on the calcium signaling phenotype of a point mutation in RyR2 Ca binding site Q3925E expressed in human stem-cell-derived cardiomyocytes (hiPSC-CMs) that was found to be lethal in a 9-year-old girl. CRISPR/Cas9-gene-edited mutant cardiomyocytes carrying the RyR2-Q3925E mutation exhibited a loss of calcium-induced calcium release (CICR) and caffeine-triggered calcium release but continued to beat arrhythmically without generating significant SR Ca release, consistent with a remodeling of the calcium signaling pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!