Unconditioned stimulus revaluation to promote conditioned fear extinction in the memory reconsolidation window.

PLoS One

Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Health Service Centers in Communities, South China Normal University, Guangzhou, China.

Published: December 2015

The retrieval-extinction paradigm, which disrupts the reconsolidation of fear memories in humans, is a non-invasive technique that can be used to prevent the return of fear in humans. In the present study, unconditioned stimulus revaluation was applied in the retrieval-extinction paradigm to investigate its promotion of conditioned fear extinction in the memory reconsolidation window after participants acquired conditioned fear. This experiment comprised three stages (acquisition, unconditioned stimulus revaluation, retrieval-extinction) and three methods for indexing fear (unconditioned stimulus expectancy, skin conductance response, conditioned stimulus pleasure rating). After the acquisition phase, we decreased the intensity of the unconditioned stimulus in one group (devaluation) and maintained constant for the other group (control). The results indicated that both groups exhibited similar levels of unconditioned stimulus expectancy, but the devaluation group had significantly smaller skin conductance responses and exhibited a growth in conditioned stimulus + pleasure. Thus, our findings indicate unconditioned stimulus revaluation effectively promoted the extinction of conditioned fear within the memory reconsolidation window.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4102463PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0101589PLOS

Publication Analysis

Top Keywords

unconditioned stimulus
28
stimulus revaluation
16
conditioned fear
16
memory reconsolidation
12
reconsolidation window
12
fear extinction
8
extinction memory
8
retrieval-extinction paradigm
8
stimulus
8
stimulus expectancy
8

Similar Publications

Valence and salience encoding in the central amygdala.

Elife

January 2025

Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States.

The central amygdala (CeA) has emerged as an important brain region for regulating both negative (fear and anxiety) and positive (reward) affective behaviors. The CeA has been proposed to encode affective information in the form of valence (whether the stimulus is good or bad) or salience (how significant is the stimulus), but the extent to which these two types of stimulus representation occur in the CeA is not known. Here, we used single cell calcium imaging in mice during appetitive and aversive conditioning and found that majority of CeA neurons (~65%) encode the valence of the unconditioned stimulus (US) with a smaller subset of cells (~15%) encoding the salience of the US.

View Article and Find Full Text PDF

Learning to fear novel stimuli by observing others in the social affordance framework.

Neurosci Biobehav Rev

January 2025

Department of Psychology, University of Turin, Turin, Italy; Department of Medical and Clinical Psychology, Tilburg University, Netherlands; Centro Linceo Interdisciplinare "Beniamino Segre", Accademia Nazionale dei Lincei, Roma, Italy. Electronic address:

Fear responses to novel stimuli can be learned directly, through personal experiences (Fear Conditioning, FC), or indirectly, by observing conspecific reactions to a stimulus (Social Fear Learning, SFL). Although substantial knowledge exists about FC and SFL in humans and other species, they are typically conceived as mechanisms that engage separate neural networks and operate at different levels of complexity. Here, we propose a broader framework that links these two fear learning modes by supporting the view that social signals may act as unconditioned stimuli during SFL.

View Article and Find Full Text PDF

Associative learning of non-nestmate cues improves enemy recognition in ants.

Curr Biol

December 2024

Department of Evolutionary Biology and Ecology, Institute of Biology I, University of Freiburg, Hauptstraße 1, 79104 Freiburg, Germany. Electronic address:

Recognition protects biological systems at all scales, from cells to societies. Social insects recognize their nestmates by colony-specific olfactory labels that individuals store as neural templates in their memory. Throughout an ant's life, learning continuously shapes the nestmate recognition template to keep up with the constant changes in colony labels.

View Article and Find Full Text PDF

Aversive social learning with a dead conspecific is achieved by Pavlovian conditioning in crickets.

Neurobiol Learn Mem

December 2024

Faculty of Science, Hokkaido University Sapporo 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan. Electronic address:

Social learning, learning from other individuals, has been demonstrated in many animals, including insects, but its detailed neural mechanisms remain virtually unknown. We showed that crickets (Gryllus bimaculatus) exhibit aversive social learning with a dead conspecific. When a learner cricket was trained to observe a dead cricket on a drinking apparatus, the learner avoided the odor of that apparatus thereafter.

View Article and Find Full Text PDF

Emotional intensity can produce both optimal and suboptimal effects on learning and memory. While emotional events tend to be better remembered, memory performance can follow an inverted U-shaped curve with increasing intensity. The strength of Pavlovian conditioning tends to increase linearly with the intensity of the aversive outcome, but leads to greater stimulus generalization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!