Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
KFe2As2, an iron-based superconductor, is expected to exhibit large spin Hall conductivity, and fabrication of high-quality thin films is requisite for evaluation of this effect and application to spintronics devices. Thin-film growth of KFe2As2 is difficult because of two intrinsic properties; its extremely hygroscopic nature and the high vapor pressure of potassium. We solved these issues by combining room-temperature pulsed laser deposition using K-rich KFe2As2 targets with thermal crystallization in KFe2As2 powder after encapsulation in an evacuated silica-glass tube with all of the processes conducted in a vacuum chamber and a dry Ar atmosphere in a glovebox. The optimized KFe2As2 films on (La,Sr)(Al,Ta)O3 single-crystal substrates were obtained by crystallization at 700 °C, and they were strongly c-axis oriented. The electrical measurements were performed with thin films protected by grease passivation to block reaction with the atmosphere. The KFe2As2 films exhibited a superconductivity transition at 3.7 K.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am5036016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!