The first combination of mid-infrared (MIR) tunable quantum cascade lasers (tQCLs) with thin-film diamond strip waveguides (DSWGs) suitable for advanced chemical sensing/biosensing is demonstrated. The sensing system is composed of thin diamond films grown on surface-passivated Si wafers via chemical vapor deposition (CVD) and microstructured using inductively coupled plasma (ICP) etching, serving as photonic waveguides for radiation emitted by a broadly tunable quantum cascade laser (tQCL) in the spectral regime of 5.78-6.35 μm (1570-1730 cm(-1)). The characterization of the free-standing diamond waveguides reveals excellent transmission properties across a broad MIR band. As a proof of concept, the detection of acetone in D2O via evanescent field absorption is demonstrated achieving a limit of detection (LOD) as low as 200 pL, which indicates a significant sensitivity improvement compared to conventional MIR slab/strip waveguides reported to date. Providing characteristic absorption features within the tuning range of the tQCL, studies using anisaldehyde as an analyte further corroborate the potential of tQCL-DSWG-based chemical sensors/biosensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac5011475DOI Listing

Publication Analysis

Top Keywords

thin-film diamond
8
advanced chemical
8
chemical sensors/biosensors
8
tunable quantum
8
quantum cascade
8
waveguides
5
diamonds spectroscopist's
4
spectroscopist's best
4
best friend
4
friend thin-film
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!