This study is to investigate the effects of vitamin D on renal fibrosis in rat diabetic nephropathy models, as well as the changes and interactions in the expressions of renal fibrogenesis- and inflammation-related genes. Rat diabetic nephropathy models were established by high-fat diets, which were subjected to TGF-β1 manipulation, as well as vitamin D treatment. H&E staining, Masson staining, and TEM detection were performed to assess the effects of vitamin D treatment and/or TGF-β1 manipulation on pathological changes in the renal tissues in these rat diabetic nephropathy models. Immunohistology and real-time PCR were used to evaluate the expressions of TGF-β1, MCP-1, CTGF, and VDR. Histological staining and TEM detection showed that, in both TGF-β1 over-expressed and interfered groups, vitamin D administration alleviated the renal fibrosis, compared with the vehicle treatment. Similar results were observed with the immunohistological staining. Real-time PCR analysis indicated that, when TGF-β1 was over-expressed in diabetic nephropathy, the expressions of MCP-1 and CTGF were also up-regulated, which would be decreased by the treatment of vitamin D. On the other hand, when TGF-β1 was interfered in DN, the expressions of MCP-1 and CTGF were relatively down-regulated, which would be further lowered by vitamin D administration. The mRNA expression of VDR was elevated by vitamin D treatment in these diabetic nephropathy models. Active vitamin D3 and lentivirus-mediated TGF-β1 interference could effectively reduce the renal fibrosis and protect the renal function in diabetic nephropathy rat models, which makes a promising therapeutic strategy for the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097221PMC

Publication Analysis

Top Keywords

diabetic nephropathy
28
renal fibrosis
16
nephropathy models
16
effects vitamin
12
rat diabetic
12
vitamin treatment
12
mcp-1 ctgf
12
vitamin renal
8
vitamin
8
tgf-β1 manipulation
8

Similar Publications

Nicotinamide n-methyltransferase inhibitor synergizes with sodium-glucose cotransporter 2 inhibitor to protect renal tubular epithelium in experimental models of type 2 diabetes mellitus.

J Diabetes Complications

January 2025

Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China. Electronic address:

Aims: We aim to explore the potential of nicotinamide n-methyltransferase (NNMT) as a sensitive marker of renal tubular injury and the possibility of an NNMT inhibitor to combine with sodium-glucose cotransporter 2 (SGLT2) inhibitor to protect proximal tubular epithelium in vivo and in vitro model of Type 2 diabetes mellitus (T2DM), respectively.

Methods: In vivo, immunohistochemical staining, Masson's trichrome staining and Sirius red staining were used to observe the changes of NNMT expression, renal tubular injury and interstitial fibrosis in renal tissue from the db/db mice. Bioinformatic analysis was also conducted to broaden the range of data validation.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a global health concern with a rising incidence, particularly in aging populations and those with a genetic predisposition. Over time, DM contributes to various complications, including nephropathy, retinopathy, peripheral arterial disease (PAD), and neuropathy. Among these, diabetic neuropathy and PAD stand out due to their high prevalence and significant impact on patients' quality of life.

View Article and Find Full Text PDF

Objective: Previous observational studies suggest a potential link between gut microbiota, metabolites, and diabetic nephropathy. However, the exact causal relationship among these factors remains unclear.

Method: We conducted a two-sample bidirectional Mendelian randomization study using summary statistics from the IEU OpenGWAS Project database to investigate gut microbiota, metabolites, and diabetic nephropathy.

View Article and Find Full Text PDF

The growing global prevalence of diabetes mellitus (DM), along with its associated complications, continues to rise. When clinically detected most DM complications are irreversible. It is therefore crucial to detect and address these complications early and systematically in order to improve patient care and outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!