We comparatively analyzed the difference between three-dimensional arterial spin labeling (3D-ASL) and the conventional dynamic susceptibility contrast (DSC) perfusion imaging in the setting of assessing brain tumor perfusion in 28 patients with proved brain tumors. All patients were scheduled with standard MRI, 3D-ASL and DSC scannings on a GE DISCOVERY MR 750 system. Maximal relative tumor perfusion was obtained based on the region of interest (ROI) method. A close correlation between 3D-ASL and DSC perfusion imaging was noted as manifested by the absence of significant differences between ASL nTBF and DSC nTBF when normalized to M (mirror region) and GM (contralateral gray matter). However, ASL nTBF was found to be highly correlated with DSC nTBF and DSC nTBV when normalized to M, GM and WM (contralateral normal white matter). Together, our data support that 3D-ASL possesses the potential to be a noninvasive alternate for DSC-MRI in assessing brain tumor perfusion in the setting of treatment prognosis and metastasis, particularly for those patients with renal failure and patients required for collection of follow up information.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097217 | PMC |
Sci Rep
January 2025
DeepClue Inc., Deajeon, Republic of Korea.
To validate the clinical feasibility of deep learning-driven magnetic resonance angiography (DL-driven MRA) collateral map in acute ischemic stroke. We employed a 3D multitask regression and ordinal regression deep neural network, called as 3D-MROD-Net, to generate DL-driven MRA collateral maps. Two raters graded the collateral perfusion scores of both conventional and DL-driven MRA collateral maps and measured the grading time.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg.
During hypoxia, tissues are subjected to an inadequate oxygen supply, disrupting the balance needed to maintain normal function. This deficiency can occur due to reduced oxygen delivery caused by impaired blood flow or a decline in the blood's ability to carry oxygen. In tumors, hypoxia and vascularization play crucial roles, shaping their microenvironments and influencing cancer progression, response to treatment and metastatic potential.
View Article and Find Full Text PDFClin Imaging
January 2025
Institute of Clinical sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Dept of Pediatric Radiology, The Queen Silvia Children's Hospital, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.
Background: Congenital heart diseases (CHDs) are common birth defects. This work presents over four years of clinical experience of 4D flow cardiovascular magnetic resonance (CMR), highlighting its value for pediatric CHD.
Methods: Children with various CHD diagnoses (n = 298) were examined on a 1.
PLoS One
January 2025
Electrical, Mechanical & Computer Engineering School, Federal University of Goias, Goiania, Brazil.
This paper proposes the use of artificial intelligence techniques, specifically the nnU-Net convolutional neural network, to improve the identification of left ventricular walls in images of myocardial perfusion scintigraphy, with the objective of improving the diagnosis and treatment of coronary artery disease. The methodology included data collection in a clinical environment, followed by data preparation and analysis using the 3D Slicer Platform for manual segmentation, and subsequently, the application of artificial intelligence models for automated segmentation, focusing on the efficiency of identifying the walls of the left ventricular. A total of 83 clinical routine exams were collected, each exam containing 50 slices, which is 4,150 images.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Department of Cardiovascular Disease, Mayo Clinic, Rochester, MN, USA.
Purpose Of Review: Critical Care Echocardiography (CCE) is now established as an important tool in the intensive care unit (ICU). This paper aims to examine the expanding role of cardiovascular ultrasound in the ICU, focusing on its applications, benefits, and challenges, while highlighting recent advancements shaping the future of critical care echocardiography.
Recent Findings: Non-invasive echocardiographic measurement of hemodynamic parameters including stroke volume, cardiac output, left ventricular filling pressures, and pulmonary pressures have been well-validated against invasive measurements.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!