Introduction: The purpose of this in vitro study was to compare the canal transportation and centering ability of Twisted File (TF) to that of Reciproc system.
Methods And Materials: Forty noncalcified roots with mature apices, minimum length of 19 mm and an apical curvature of 15-30 degrees (according to Schneider's method), from freshly extracted mandibular and maxillary teeth, were selected for this study. Samples were randomly divided into two groups (n=20) and canal preparation with either TF or Reciproc was performed according to manufacturers' instruction. Pre- and post-instrumentation cone-beam computed tomography (CBCT) images were captured and the extent of canal transportation and centering ability of the files were calculated, using the NNT Viewer software and Photoshop CS5, at levels of 3, 4, and 5 mm from the apex. The Mann-Whitney U test was used to analyze the statistical significance between the two groups.
Results: One fracture occurred in the TF group. TF produced more transportation than Reciproc in both mesiodistal and buccolingual directions; however, the difference between the two systems were not statistically significant except for the TF group at 5-mm distance from the working length, where the difference was significant (P>0.05).
Conclusion: Both file systems were able keep the original curvature of the canal and thus can be considered safe for clinical application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4099947 | PMC |
BMC Oral Health
January 2025
Afrone Network, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
Background: Climate change is a global challenge, caused by increasing greenhouse gas (GHG) emissions. Dental clinical practice contributes to these emissions through patient and staff travel, waste, energy and water consumption and procurement. Carbon footprinting quantifies GHG emissions.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt +201113343594.
Achieving a net-zero emissions economy requires significant decarbonization of the transportation sector, which depends on the development of highly efficient electrocatalysts. Electrolytic water splitting is a promising approach to this end, with Ni-Mo alloys emerging as strong candidates for hydrogen production catalysts. This study investigates the electrodeposition of Ni and Ni-Mo nanostructured alloys with high molybdenum content onto low-carbon steel cathodes using a novel alkaline green lactate bath.
View Article and Find Full Text PDFInt J Dent
January 2025
Department of Endodontics, School of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran.
This study compared the apical transportation and centering ratio of ProTaper Next (PTN) and XP-endo Shaper (XPS) nickel titanium (NiTi) rotary files in curved root canals using cone beam computed tomography (CBCT). The current in vitro study involved the mesiobuccal canals of mesial roots in 44 extracted mandibular first molars that exhibited apical curvature ranging from 10° to 30°. Two experimental groups were randomly formed from the teeth ( = 22) and subjected to instrumentation with PTN and XPS.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Otolaryngology, UCSD School of Medicine, La Jolla, San Diego, CA 92093-0666, USA.
The tympanic membrane forms an impenetrable barrier between the ear canal and the air-filled middle ear, protecting it from fluid, pathogens, and foreign material entry. We previously screened a phage display library and discovered peptides that mediate transport across the intact membrane. The route by which transport occurs is not certain, but possibilities include paracellular transport through loosened intercellular junctions and transcellular transport through the cells that comprise the various tympanic membrane layers.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
The preservation of the original configurations of root canals during endodontic preparation is crucial for treatment success. Nickel-titanium (NiTi) rotary systems have been refined to optimize canal shaping while minimizing iatrogenic errors. This study aimed to evaluate and compare the shaping efficacy of the novel R-Motion (RM) and the established WaveOne Gold (WG) systems using micro-computed tomography (micro-CT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!