Maternal behavior ensures the proper development of the offspring. In lactating mammals, maternal behavior is impaired by stress, the physiological consequence of central corticotropin-releasing factor receptor (CRF-R) activation. However, which CRF-R subtype in which specific brain area(s) mediates this effect is unknown. Here we confirmed that an intracerebroventricularly injected nonselective CRF-R antagonist enhances, whereas an agonist impairs, maternal care. The agonist also prolonged the stress-induced decrease in nursing, reduced maternal aggression and increased anxiety-related behavior. Focusing on the bed nucleus of the stria terminalis (BNST), CRF-R1 and CRF-R2 mRNA expression did not differ in virgin versus lactating rats. However, CRF-R2 mRNA was more abundant in the posterior than in the medial BNST. Pharmacological manipulations within the medial-posterior BNST showed that both CRF-R1 and CRF-R2 agonists reduced arched back nursing (ABN) rapidly and after a delay, respectively. After stress, both antagonists prevented the stress-induced decrease in nursing, with the CRF-R2 antagonist actually increasing ABN. During the maternal defense test, maternal aggression was abolished by the CRF-R2, but not the CRF-R1, agonist. Anxiety-related behavior was increased by the CRF-R1 agonist and reduced by both antagonists. Both antagonists were also effective in virgin females but not in males, revealing a sexual dimorphism in the regulation of anxiety within the medial-posterior BNST. In conclusion, the detrimental effects of increased CRF-R activation on maternal behavior are mediated via CRF-R2 and, to a lesser extent, via CRF-R1 in the medial-posterior BNST in lactating rats. Moreover, both CRF-R1 and CRF-R2 regulate anxiety in females independently of their reproductive status.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4099544 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.4220-13.2014 | DOI Listing |
Horm Behav
August 2016
Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany. Electronic address:
Reduced corticotropin-releasing factor (CRF) receptor activation in the postpartum period is essential for adequate maternal behavior. One of the factors contributing to this hypo-activity might be the CRF-binding protein (CRF-BP), which likely reduces the availability of free extracellular CRF/urocortin 1. Here, we investigated behavioral effects of acute CRF-BP inhibition using 5μg of CRF(6-33) administered either centrally or locally within different parts of the bed nucleus of the stria terminalis (BNST) in lactating rats.
View Article and Find Full Text PDFPsychoneuroendocrinology
February 2016
Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93053 Regensburg, Germany. Electronic address:
Adequate maternal behavior in rats requires minimal corticotropin-releasing factor receptor (CRF-R) activation in the medial-posterior bed nucleus of the stria terminalis (mpBNST). Based on the architectural heterogeneity of the BNST and its distinct inter-neural connectivity, we tested whether CRF-R manipulation in another functional part, the anterior-dorsal BNST (adBNST), differentially modulates maternal behavior. We demonstrate that in the adBNST, activation of CRF-R1 reduced arched back nursing (ABN) and nursing, whereas activation of CRF-R2 resulted in an initial reduction in nursing but significantly increased the incidence of ABN 5h after the treatment.
View Article and Find Full Text PDFJ Neurosci
July 2014
Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93053 Regensburg, Germany, and
Maternal behavior ensures the proper development of the offspring. In lactating mammals, maternal behavior is impaired by stress, the physiological consequence of central corticotropin-releasing factor receptor (CRF-R) activation. However, which CRF-R subtype in which specific brain area(s) mediates this effect is unknown.
View Article and Find Full Text PDFJ Neuroendocrinol
August 1994
Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington 40536-0084.
The bed nucleus of the stria terminalis (BNST) occupies a central position in pathways regulating hypothalamo-pituitary-adrenocortical (HPA) stress regulation. The potential role of the BNST in tonic neural control of HPA function was assessed by examining effects of selective BNST lesions on expression of ACTH secretagogues in HPA-integrative neurons of the medial parvocellular paraventricular nucleus. Anterior BNST lesions (ABN) involved major portions of the anteromedial, anterolateral, ventromedial, ventrolateral, dorsolateral and juxtacapsular subnuclei.
View Article and Find Full Text PDFBrain Res Bull
November 1991
Department of Anatomy, University of Iowa, Iowa City 52242.
The projections from the central amygdaloid nucleus (Ce) to different subdivisions of the bed nucleus of the stria terminalis (BNST) were investigated using retrograde transport of fluorescent dyes. Iontophoretic injections of either Fast Blue (FB) or bisbenzimide (BB) were applied to the anterior medial, posterior medial, anterior lateral and posterior lateral parts of the bed nucleus of the stria terminalis. The anterior medial BNST receives projections from caudal part of medial Ce (CeM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!