Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metallothioneins (MTs) are cysteine-rich, low molecular weight, metal-binding proteins that are widely distributed in living organisms. Plants produce metal-chelating proteins such as MTs to overcome the toxic effects of heavy metals. We cloned three MT genes from sweetpotato leaves [Ipomoea batatas (L.) Lam.]. The three IbMT genes were classified according to their cysteine residue alignment into type 1 (IbMT1), type 2 (IbMT2), and type 3 (IbMT3). IbMT1 was the most abundantly transcribed MT. It was predominantly expressed in leaves, roots, and callus. IbMT2 transcript was detected only in stems and fibrous roots, whereas IbMT3 was strongly expressed in leaves and stems. The IbMT expression profiles were investigated in plants exposed to heavy metals and abiotic stresses. The levels of IbMT1 expression were strongly elevated in response to Cd and Fe, and moderately higher in response to Cu. The IbMT3 expression pattern in response to heavy metals was similar to that of IbMT1. Exposure to abiotic stresses such as methyl viologen (MV; paraquat), NaCl, polyethylene glycol (PEG), and H2O2 up-regulated IbMT expression; IbMT1 responded strongly to MV and NaCl, whereas IbMT3 was induced by low temperature and PEG. Transgenic Escherichia coli overexpressing IbMT1 protein exhibited results suggest that IbMT could be a useful tool for engineering plants with enhanced tolerance to environmental stresses and heavy metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-014-3582-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!