Tryptophanase from E. coli displays positive CD in the coenzyme absorption bands at 337 and 420 nm. Breaking of the internal coenzyme-lysine imine bond upon reaction with hydroxylamine or amino-oxyacetate is accompanied by a strong diminution of the positive CD. Interaction of tryptophanase with L-threonine and beta-phenyl-DL-serine(threo form) leads to a decrease in absorbance at 337 nm and to an increase at 425 nm. This is associated with inversion of the CD sign, i.e. with disappearance of the positive CD in the 420-nm band and its replacement by a negative CD. L-Phenylalanine, alpha-methyl-DL-serine and D-alanine cause an increase in absorbance at 425-430 nm and a diminution of the positive CD in this band. In the presence of D-alanine and indole a negative CD appears in the 400-450 nm region. It is inferred that an external coenzyme-quasisubstrate aldimine is formed on interaction of the above amino acids with the enzyme. L-Alanine and oxindolyl-L-alanine evoke an intense narrow absorption band at 500 nm ascribed to a quinonoid intermediate; a positive CD is observed in this band. The dissymmetry factor delta A/A in the 500-nm band is much smaller than that in the absorption bands of the unliganded enzyme. Inversion of the CD sign on formation of the external aldimine and diminution of the dissymmetry factor in the quinonoid band indicate that reorientations of the coenzyme occur in the course of the catalytic action of tryptophanase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0300-9084(89)90185-5DOI Listing

Publication Analysis

Top Keywords

absorption bands
8
diminution positive
8
inversion sign
8
dissymmetry factor
8
band
6
positive
5
conformational changes
4
changes active
4
active site
4
tryptophanase
4

Similar Publications

A porphyrin comprising a carboxyl-functionalized pyridine moiety was synthesized and characterized using H NMR, C NMR, FT-IR, powder-XRD, BET, ICP-MS, SEM and EDAX. The proton level (H = 1.19) and energy band gap (1.

View Article and Find Full Text PDF

Three triphenylamine-Indane donor-acceptor dyes with different functional groups on the acceptor were studied to investigate how substitution would affect the optical properties. The dyes studied were IndCN, containing two malononitrile groups; InO, with two ketone groups; and InOCN, which features mixed functional groups. A combination of Raman spectroscopy, UV-vis absorption and emission spectroscopy, and density functional theory (DFT) calculations were employed for characterization.

View Article and Find Full Text PDF

Paddlewheel-type and half-paddlewheel-type diruthenium(II,II) complexes with 1,8-naphthyridine-2-carboxylate.

Dalton Trans

January 2025

Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane, 690-8504, Japan.

Paddlewheel-type diruthenium(II,II) complexes are paramagnetic with two unpaired electrons ( = 1) and can be utilized as versatile building blocks for higher-order structures, such as supramolecular complexes, coordination polymers, and metal-organic frameworks, although they are generally highly air-sensitive. In this study, we developed an air-stable paddlewheel-type diruthenium(II,II) complex with two electron-withdrawing 1,8-naphthyridine-2-carboxylate (npc) ligands, [Ru(μ-npc)(OCMe)] (1). The two acetate ligands in 1 can be replaced by other carboxylate ligands; the solvothermal reactions of 1 with benzoic acid (HOCPh) yields the heteroleptic [Ru(μ-npc)(OCPh)] (2), whereas its reaction with 1,8-naphthyridine-2-carboxylic acid (Hnpc) produces the homoleptic [Ru(μ-npc)(η-npc)] (3).

View Article and Find Full Text PDF

Many applications of nanocrystals rely on their use in light detection and emission. In recent years, nanocrystals with more relaxed carrier confinement, including so-called 'bulk' and 2D implementations, have made their stake. In such systems, the charge carriers generated after (photo-)excitation are spread over a semi-continuous density of states, behaviour controlled by the carrier temperature .

View Article and Find Full Text PDF

The introduction of intermediate bands by hyperdoping is an efficient way to realize infrared light absorption of silicon. In this Letter, inert element (helium and argon for specific)-doped black silicon is obtained by helium ion-implantation followed by femtosecond pulse laser irradiation in an argon atmosphere based on near-intrinsic silicon substrates. Within the 200 nm of the silicon surface, the concentrations of helium and argon are both above the order of 10 cm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!