A 3.8-V earth-abundant sodium battery electrode.

Nat Commun

1] Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan [2] Unit of Element Strategy Initiative for Catalysts and Batteries, ESICB, Kyoto University, Kyoto 615-8510, Japan.

Published: July 2014

Rechargeable lithium batteries have ushered the wireless revolution over last two decades and are now matured to enable green automobiles. However, the growing concern on scarcity and large-scale applications of lithium resources have steered effort to realize sustainable sodium-ion batteries, Na and Fe being abundant and low-cost charge carrier and redox centre, respectively. However, their performance is limited owing to low operating voltage and sluggish kinetics. Here we report a hitherto-unknown material with entirely new composition and structure with the first alluaudite-type sulphate framework, Na2Fe2(SO4)3, registering the highest-ever Fe(3+)/Fe(2+) redox potential at 3.8 V (versus Na, and hence 4.1 V versus Li) along with fast rate kinetics. Rare-metal-free Na-ion rechargeable battery system compatible with the present Li-ion battery is now in realistic scope without sacrificing high energy density and high power, and paves way for discovery of new earth-abundant sustainable cathodes for large-scale batteries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109020PMC
http://dx.doi.org/10.1038/ncomms5358DOI Listing

Publication Analysis

Top Keywords

38-v earth-abundant
4
earth-abundant sodium
4
sodium battery
4
battery electrode
4
electrode rechargeable
4
rechargeable lithium
4
lithium batteries
4
batteries ushered
4
ushered wireless
4
wireless revolution
4

Similar Publications

We report efficient electrolysis of both water-splitting half reactions in the same medium by a bifunctional 3D electrode comprising Co3O4 nanospheres nucleated on the surface of nitrogen-doped carbon nanotubes (NCNTs) that in turn are grown on conductive carbon paper (CP). The resulting electrode exhibits high stability and large electrochemical activity for both oxygen and hydrogen evolution reactions (OER and HER). We obtain a current density of 10 mA/cm(2) in 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!