Objective: To determine whether indoor air quality in schools is associated with the prevalence of allergic and respiratory diseases in children.
Methods: We evaluated 1,019 students at 51 elementary schools in the city of Coimbra, Portugal. We applied a questionnaire that included questions regarding the demographic, social, and behavioral characteristics of students, as well as the presence of smoking in the family. We also evaluated the indoor air quality in the schools.
Results: In the indoor air of the schools evaluated, we identified mean concentrations of carbon dioxide (CO2) above the maximum reference value, especially during the fall and winter. The CO2 concentration was sometimes as high as 1,942 ppm, implying a considerable health risk for the children. The most prevalent symptoms and respiratory diseases identified in the children were sneezing, rales, wheezing, rhinitis, and asthma. Other signs and symptoms, such as poor concentration, cough, headache, and irritation of mucous membranes, were identified. Lack of concentration was associated with CO2 concentrations above the maximum recommended level in indoor air (p = 0.002). There were no other significant associations.
Conclusions: Most of the schools evaluated presented with reasonable air quality and thermal comfort. However, the concentrations of various pollutants, especially CO2, suggest the need for corrective interventions, such as reducing air pollutant sources and improving ventilation. There was a statistically significant association between lack of concentration in the children and exposure to high levels of CO2. The overall low level of pollution in the city of Coimbra might explain the lack of other significant associations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109198 | PMC |
http://dx.doi.org/10.1590/s1806-37132014000300009 | DOI Listing |
Sci Total Environ
January 2025
Department of Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.
Formaldehyde is considered as a significant contaminant. This study aimed to perform comprehensive research with systematic review, health risk estimation, meta-analysis, and Monte Carlo simulation to evaluate exposure to formaldehyde at different seasons of the year in various indoor environments. A systematic literature review was initially performed.
View Article and Find Full Text PDFCurr Environ Health Rep
January 2025
Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, 104 Mason Farm Rd., Chapel Hill, NC, 27514, USA.
Purpose Of Review: A major contributor to household air pollution (HAP) in sub-Saharan Africa (SSA) is unclean cooking fuel. Improved cookstove technology (ICT) interventions have been promoted as a solution, but their impacts on health are unclear. Our aim is to conduct a systematic review to explore the impacts of ICT interventions on health outcomes in SSA.
View Article and Find Full Text PDFRespir Res
January 2025
Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
Background: Air pollution is associated with poor asthma outcomes in children. However, most studies focus on ambient or indoor monitor pollution levels. Few studies evaluate breathing zone exposures, which may be more consequential for asthma outcomes.
View Article and Find Full Text PDFAppl Physiol Nutr Metab
January 2025
University of Ottawa, Ottawa, Canada.
We evaluated enterocyte damage (IFABP), microbial translocation (sCD14), and inflammatory responses (TNF-α, IL-6, CRP) in 16 older adults (66-78 years) during 8 hours rest in conditions simulating homes maintained at 22°C (control), the 26°C indoor temperature upper limit proposed by health agencies, and homes without air-conditioning during heatwaves (31°C, 36°C). Relative to 22°C, IFABP was elevated ~181 pg/mL after exposure to 31°C (P=0.07), and by ~378 pg/mL (P<0.
View Article and Find Full Text PDFCurr Allergy Asthma Rep
January 2025
Division of Immunology, Department of Medicine, Boston Children's Hospital, Boston, MA, USA.
Purpose Of Review: This manuscript reviews the impact of important indoor environmental exposures on pediatric asthma, with a focus on recent literature in the field.
Recent Findings: Studies continue to support an association between numerous indoor aeroallergens and air pollutants found in homes and schools and increased asthma morbidity overall. Several recent home and school intervention studies have shown promise, though results have been overall mixed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!