Neodymium, one of the more critically scarce rare earth metals, is often used in sustainable technologies. In this study, we investigate the potential contribution of neodymium recycling to reducing scarcity in supply, with a case study on computer hard disk drives (HDDs). We first review the literature on neodymium production and recycling potential. From this review, we find that recycling of computer HDDs is currently the most feasible pathway toward large-scale recycling of neodymium, even though HDDs do not represent the largest application of neodymium. We then use a combination of dynamic modeling and empirical experiments to conclude that within the application of NdFeB magnets for HDDs, the potential for loop-closing is significant: up to 57% in 2017. However, compared to the total NdFeB production capacity, the recovery potential from HDDs is relatively small (in the 1-3% range). The distributed nature of neodymium poses a significant challenge for recycling of neodymium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es501572z | DOI Listing |
Nano Lett
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
The transformation of bulk transition-metal dichalcogenide (TMD) particles into ultrathin nanosheets with both an acceptable yield and preserved crystalline integrity presents a substantial challenge in electrochemical exfoliation. This challenge arises from the continuous potential stress that the materials experience in traditional exfoliation setups. Herein, we propose a new fluidized electrochemical exfoliation (FEE) method to efficiently transform TMD powders into high-quality, few-layered TMD nanosheets in the aqueous phase.
View Article and Find Full Text PDFAnalyst
January 2025
Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
The development of a print-at-home, low-cost, and miniaturized paper-based cell with 3D-printed electrodes using a 3D-printing pen and a bespoke conductive filament for detecting capsaicin in hot sauce is reported herein. The material cost of producing each electrode was less than £0.01.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China.
The adsorption of phosphate in the collected water is crucial to alleviate the crisis of phosphorus resources, which is in line with the concept of green and sustainable development of resources. In this study, based on the calcium modification technology of pyrolysis combined with chemical modification, a new type of calcium modified coal gangue (CaMCG) was prepared by using coal gangue as raw material and calcium chloride as modifier for the removal of phosphate.The optimum preparation conditions of CaMCG were obtained by response surface test: m:m=1, calcination temperature 735℃, calcination time 135 min.
View Article and Find Full Text PDFSci Rep
January 2025
Technology Innovation, PT Pertamina (Persero), Jl. Raya Bekasi KM. 20 Cakung, East Jakarta, Jakarta, 13920, Republic of Indonesia.
Selective lithium recovery from a mixture of LFP-NMC spent lithium batteries presents significant challenges due to differing structures and elemental compositions of the batteries. These differences necessitate a distinct recycling pathway for each, complicating the process for the mixture. This study explored a carbothermal reduction approach combined with water leaching under atmospheric conditions to achieve a selective lithium recovery.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:
Background: β-lactoglobulin (β-Lg), a major allergen in dairy products, can trigger severe allergic reactions and even fatal outcomes in infants. In this work, we develop a new low background current redox recycling strategy by conjugating the electrochemical mediator to trimetallic hybrid nanoparticles (NPs)-dispersed graphene as the signal tag, which is coupled with DNAzyme amplifications to construct highly catalytic and ultrasensitive β-Lg aptasensor.
Results: Target β-Lg molecules bind aptamers in DNAzyme/aptamer duplexes to release active DNAzymes to initiate cyclic cleavage of hairpin substrates.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!