Pathologic mechanical stress and endotoxin exposure increases lung endothelial microparticle shedding.

Am J Respir Cell Mol Biol

1 Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine.

Published: February 2015

Acute lung injury (ALI) results from infectious challenges and from pathologic lung distention produced by excessive tidal volume delivered during mechanical ventilation (ventilator-induced lung injury [VILI]) and is characterized by extensive alveolar and vascular dysfunction. Identification of novel ALI therapies is hampered by the lack of effective ALI/VILI biomarkers. We explored endothelial cell (EC)-derived microparticles (EMPs) (0.1-1 μm) as potentially important markers and potential mediators of lung vascular injury in preclinical models of ALI and VILI. We characterized EMPs (annexin V and CD31 immunoreactivity) produced from human lung ECs exposed to physiologic or pathologic mechanical stress (5 or 18% cyclic stretch [CS]) or to endotoxin (LPS). EC exposure to 18% CS or to LPS resulted in increased EMP shedding compared with static cells (∼ 4-fold and ∼ 2.5-fold increases, respectively). Proteomic analysis revealed unique 18% CS-derived (n = 10) and LPS-derived EMP proteins (n = 43). VILI-challenged mice (40 ml/kg, 4 h) exhibited increased plasma and bronchoalveolar lavage CD62E (E-selectin)-positive MPs compared with control mice. Finally, mice receiving intratracheal instillation of 18% CS-derived EMPs displayed significant lung inflammation and injury. These findings indicate that ALI/VILI-producing stimuli induce significant shedding of distinct EMP populations that may serve as potential ALI biomarkers and contribute to the severity of lung injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370243PMC
http://dx.doi.org/10.1165/rcmb.2013-0347OCDOI Listing

Publication Analysis

Top Keywords

lung injury
12
pathologic mechanical
8
mechanical stress
8
lung
8
18% cs-derived
8
injury
5
stress endotoxin
4
endotoxin exposure
4
exposure increases
4
increases lung
4

Similar Publications

Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.

Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.

View Article and Find Full Text PDF

Background: Marathon training and running have many beneficial effects on human health and physical fitness; however, they also pose risks. To date, no comprehensive review regarding both the benefits and risks of marathon running on different organ systems has been published.

Main Body: The aim of this review was to provide a comprehensive review of the benefits and risks of marathon training and racing on different organ systems.

View Article and Find Full Text PDF

The anti-inflammatory role of miR-23b-3p (miR-23b) is known in autoimmune diseases like multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. However, its role in sepsis-related acute lung injury (ALI) and its effect on macrophages in ALI remain unexplored. This investigation aimed to evaluate miR-23b's therapeutic potential in macrophages in the context of ALI.

View Article and Find Full Text PDF

Hexahistidine-metal assembly encapsulated fibroblast growth factor 21 for lipopolysaccharide-induced acute lung injury.

Eur J Pharm Biopharm

January 2025

Intervention Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China. Electronic address:

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) represents a spectrum of potentially fatal conditions that currently lack effective drug treatment. Recent researches suggest that Fibroblast Growth Factor 21 (FGF21) may protect against ALI/ARDS. However, the clinical use of FGF21 is limited by its rapid degradation, restricted targeting capabilities, and numerous adverse effects.

View Article and Find Full Text PDF

In injured and diseased tissues, changes in molecular and cellular compositions, as well as tissue architecture, lead to alterations in both physiological and physical characteristics. Notably, the electrical properties of tissues, which can be characterized as bioelectrical impedance (bioimpedance), are closely linked to the health and pathological conditions of the tissues. This highlights the significant role of quantitatively characterizing these electrical properties in improving the accuracy and speed of diagnosis and prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!