Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acquiring detailed structural information about the various aggregation states of the huntingtin-exon1 protein (Htt-exon1) is crucial not only for identifying the true nature of the neurotoxic species responsible for Huntington's disease (HD) but also for designing effective therapeutics. Using time-resolved small-angle neutron scattering (TR-SANS), we followed the conformational changes that occurred during fibrillization of the pathologic form of Htt-exon1 (NtQ42P10) and compared the results with those obtained for the wild-type (NtQ22P10). Our results show that the aggregation pathway of NtQ22P10 is very different from that of NtQ42P10, as the initial steps require a monomer to 7-mer transition stage. In contrast, the earliest species identified for NtQ42P10 are monomer and dimer. The divergent pathways ultimately result in NtQ22P10 fibrils that possess a packing arrangement consistent with the common amyloid sterical zipper model, whereas NtQ42P10 fibrils present a better fit to the Perutz β-helix structural model. The structural details obtained by TR-SANS should help to delineate the key mechanisms that underpin Htt-exon1 aggregation leading to HD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104047 | PMC |
http://dx.doi.org/10.1016/j.bpj.2014.06.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!